Question Number 195344 by Mingma last updated on 31/Jul/23 Answered by kapoorshah last updated on 31/Jul/23 $${cos}\:\alpha\:=\:{cos}\:\alpha \\ $$$$\frac{{a}^{\mathrm{2}} \:+\:\mathrm{6}^{\mathrm{2}} \:−\:\mathrm{4}^{\mathrm{2}} }{\mathrm{2}.{a}.\mathrm{6}}\:=\:\frac{{b}^{\mathrm{2}} \:+\:\mathrm{6}^{\mathrm{2}} \:−\:\mathrm{4}^{\mathrm{2}} }{\mathrm{2}.{b}.\mathrm{6}}…
Question Number 195289 by Rupesh123 last updated on 29/Jul/23 Answered by HeferH last updated on 31/Jul/23 Commented by HeferH last updated on 31/Jul/23 $$\bigtriangleup{CMB}\:\cong\:\bigtriangleup{AMD}\:\:\Rightarrow\:\angle{IJM}\:=\:\mathrm{60}° \\…
Question Number 195287 by Mingma last updated on 29/Jul/23 Answered by MM42 last updated on 29/Jul/23 $${CD}={DE}\Rightarrow\angle{C}\mathrm{2}=\angle{E}\:\:\:\&\:\angle{D}\mathrm{1}+\angle{E}=\mathrm{60} \\ $$$$\angle{C}\mathrm{1}=\mathrm{60}−\angle{C}\mathrm{2}=\mathrm{60}−\angle{E}=\angle{D}\mathrm{1} \\ $$$$\frac{{CD}}{{Sin}\mathrm{60}}=\frac{\mathrm{2}}{{SinC}\mathrm{1}}\:\:\&\:\:\frac{{DE}}{{Sin}\mathrm{120}}=\frac{{BE}}{{SinD}\mathrm{1}} \\ $$$$\frac{\mathrm{2}}{{SinC}\mathrm{1}}=\frac{{BE}}{{SinD}\mathrm{1}}\Rightarrow{BE}=\mathrm{2}\:\checkmark \\ $$…
Question Number 195273 by Shlock last updated on 28/Jul/23 Commented by necx122 last updated on 30/Jul/23 $${are}\:{the}\:{three}\:{red}\:{lines}\:{equal}? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 194998 by a.lgnaoui last updated on 22/Jul/23 $$\mathrm{Resolution}\:\mathrm{du}\:\mathrm{probldme}\:\mathrm{pose}\:\mathrm{par}\: \\ $$$$\mathrm{sonukgindia}\:\left(\mathrm{16}.\mathrm{7}.\mathrm{2023}\right) \\ $$$$\mathrm{voir}\:\:\mathrm{Q194819} \\ $$$$\bigtriangleup\boldsymbol{\mathrm{ABC}}\:\:\boldsymbol{\mathrm{AM}}=\boldsymbol{\mathrm{AN}}=\boldsymbol{\mathrm{AD}}\mathrm{cos}\:\frac{\boldsymbol{\alpha}}{\mathrm{2}} \\ $$$$\begin{cases}{\boldsymbol{\mathrm{AC}}=\boldsymbol{\mathrm{AM}}+\boldsymbol{\mathrm{MC}}=\mathrm{17}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}\right)}\\{\boldsymbol{\mathrm{AB}}=\boldsymbol{\mathrm{AN}}+\boldsymbol{\mathrm{NB}}\:\:=\mathrm{18}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)}\end{cases} \\ $$$$\:\:\boldsymbol{\mathrm{AB}}−\boldsymbol{\mathrm{AC}}=\mathrm{1}=\boldsymbol{\mathrm{NB}}−\boldsymbol{\mathrm{MC}}\:\:\:\left(\mathrm{3}\right) \\ $$$$\bigtriangleup\boldsymbol{\mathrm{CDE}}\:\:\:\mathrm{cos}\:\frac{\boldsymbol{\mathrm{C}}}{\mathrm{2}}=\frac{\boldsymbol{\mathrm{CM}}}{\boldsymbol{\mathrm{CD}}}=\frac{\boldsymbol{\mathrm{CE}}}{\boldsymbol{\mathrm{CD}}}\:\Rightarrow\boldsymbol{\mathrm{CM}}=\boldsymbol{\mathrm{CE}} \\ $$$$\bigtriangleup\boldsymbol{\mathrm{BDE}}\:\:\:\mathrm{cos}\:\frac{\boldsymbol{\mathrm{B}}}{\mathrm{2}}=\frac{\boldsymbol{\mathrm{BE}}}{\boldsymbol{\mathrm{BD}}}=\frac{\boldsymbol{\mathrm{BN}}}{\boldsymbol{\mathrm{BD}}}\Rightarrow\boldsymbol{\mathrm{BN}}=\boldsymbol{\mathrm{BE}} \\…
Question Number 195043 by necx122 last updated on 22/Jul/23 Commented by necx122 last updated on 22/Jul/23 $${Please},\:{I}\:{meed}\:{help}\:{with}\:{this}.\:{It}'{s}\:{quite} \\ $$$${tricky}\:{for}\:{me}\:{to}\:{tackle}. \\ $$ Answered by a.lgnaoui last…
Question Number 195046 by Mathstar last updated on 22/Jul/23 Commented by Mathstar last updated on 23/Jul/23 $$ \\ $$$$\:\:\mathrm{Given}\:\mathrm{curve}\:\mathrm{ysin}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{a}\:\mathrm{green}\: \\ $$$$\:\:\:\mathrm{square};\:\mathrm{solve}\:\mathrm{for}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}.\:\: \\ $$ Answered by…
Question Number 194939 by Mingma last updated on 20/Jul/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 194938 by Mingma last updated on 20/Jul/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 194861 by cherokeesay last updated on 17/Jul/23 Answered by horsebrand11 last updated on 17/Jul/23 $$\:\:\mathrm{let}\:\mathrm{the}\:\mathrm{side}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{small} \\ $$$$\:\:\mathrm{square}\:\mathrm{be}\:\mathrm{p}. \\ $$$$\:\:\left(\mathrm{1}+\mathrm{p}\right)^{\mathrm{2}} \:+\:\mathrm{p}^{\mathrm{2}} \:=\:\left(\sqrt{\mathrm{2}}\:\right)^{\mathrm{2}} \\ $$$$\:\:\mathrm{2p}^{\mathrm{2}}…