Menu Close

Category: Geometry

Question-61994

Question Number 61994 by ajfour last updated on 13/Jun/19 Commented by ajfour last updated on 13/Jun/19 $${Find}\:{the}\:\boldsymbol{{r}}\:{of}\:{largest}\:{size}\:{sphere}\: \\ $$$${that}\:{can}\:{rest}\:{against}\:{the}\:{rim}\:{of} \\ $$$${cylinder}\:{on}\:{one}\:{side}\:{and}\:{the} \\ $$$${stick}\:{on}\:{the}\:{other}\:{side}. \\ $$…

Question-192988

Question Number 192988 by Mingma last updated on 01/Jun/23 Answered by Subhi last updated on 01/Jun/23 $${suppose}\:{line}\:=\:{l} \\ $$$${line}\:=\:\sqrt{{l}^{\mathrm{2}} +{l}^{\mathrm{2}} }\:=\:\sqrt{\mathrm{2}\:}\:{l} \\ $$$$\frac{\sqrt{\mathrm{2}}\:{l}}{{sin}\left(\mathrm{180}−\left(\mathrm{45}−{x}+{x}\right)\right)}=\frac{{l}}{{sin}\left(\mathrm{45}−{x}\right)} \\ $$$${sin}\left(\mathrm{45}−{x}\right)=\frac{{sin}\left(\mathrm{135}\right)}{\:\sqrt{\mathrm{2}}}=\frac{\mathrm{1}}{\mathrm{2}}…

Question-192987

Question Number 192987 by Mingma last updated on 01/Jun/23 Answered by ajfour last updated on 01/Jun/23 $${let}\:{left}\:{vertical}=\mathrm{2} \\ $$$$\mathrm{2cos}\:\theta={c}\mathrm{cos}\:{x} \\ $$$$\mathrm{sin}\:\theta={c}\mathrm{sin}\:{x} \\ $$$$\mathrm{4cos}\:\theta\mathrm{cos}\:\theta={c}\mathrm{cos}\:\left(\pi−{x}−\theta\right) \\ $$$$……….\:\:\:\:\:\:\:\:………..\:\:\:\:\:\:\:………..…

Question-61912

Question Number 61912 by ajfour last updated on 11/Jun/19 Commented by ajfour last updated on 11/Jun/19 $${Find}\:{maximum}\:{side}\:{length}\:{of} \\ $$$${equilateral}\:{triangle}\:{ABC}. \\ $$$$\left({The}\:{radii}\:{of}\:{the}\:{circles}\:{are}\:{p},{q},{r}\right). \\ $$ Terms of…

Question-61864

Question Number 61864 by Tawa1 last updated on 10/Jun/19 Commented by MJS last updated on 10/Jun/19 $$\mathrm{I}\:\mathrm{cannot}\:\mathrm{read}\:\mathrm{the}\:\mathrm{fraction}.\:\mathrm{Is}\:\mathrm{it}\:\frac{\mathrm{3}}{\mathrm{2}}{k}? \\ $$ Commented by Tawa1 last updated on…

Question-61861

Question Number 61861 by mr W last updated on 10/Jun/19 Commented by mr W last updated on 10/Jun/19 $${H}\:{is}\:{the}\:{orthocenter}\:{of}\:{triangle}\:{ABC}. \\ $$$${Its}\:{distance}\:{to}\:{the}\:{vertexes}\:{is}\:\alpha,\:\beta,\:\gamma \\ $$$${respectively}. \\ $$$${Find}\:{the}\:{side}\:{lengthes}\:{a},\:{b},\:{c}\:{of}\:{the}…