Menu Close

Category: Geometry

Question-190191

Question Number 190191 by normans last updated on 29/Mar/23 Answered by a.lgnaoui last updated on 30/Mar/23 $${the}\:{Area}\:{divided}\:{by}\:\mathrm{4}\:{portions} \\ $$$$\mathrm{1}\bullet{head}\:{of}\:{bird} \\ $$$$\:\:\:{A}_{\mathrm{1}} =\frac{\mathrm{1}×\pi}{\mathrm{2}} \\ $$$$\mathrm{2}\bullet{tronc} \\…

Question-59100

Question Number 59100 by ajfour last updated on 04/May/19 Commented by ajfour last updated on 04/May/19 $$\mathrm{A}\:\mathrm{is}\:\mathrm{on}\:\mathrm{the}\:\mathrm{rim}\:\mathrm{of}\:\mathrm{a}\:\mathrm{hemisphere}, \\ $$$$\mathrm{radius}\:\mathrm{R}.\:\mathrm{B}\:\mathrm{and}\:\mathrm{C}\:\mathrm{on}\:\mathrm{the}\:\mathrm{hemisphere} \\ $$$$\mathrm{surface};\:\mathrm{find}\:\mathrm{maximum}\:\mathrm{area}\:\bigtriangleup\mathrm{ABC}. \\ $$ Commented by…

In-AB-C-II-a-2-4R-r-a-r-I-incircle-center-I-a-excircle-center-corresponding-A-R-circumcircle-radius-r-incircle-radiu

Question Number 190104 by mnjuly1970 last updated on 27/Mar/23 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{In}\:\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\:\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{II}_{\:{a}} ^{\:\mathrm{2}} \:\overset{?} {=}\:\mathrm{4}{R}\:\left(\:{r}_{\:{a}} \:−\:{r}\:\right) \\ $$$$ \\ $$$$\:\:\:\:\mathrm{I}\::\:{incircle}\:\:{center}…

Question-190094

Question Number 190094 by mnjuly1970 last updated on 27/Mar/23 Answered by a.lgnaoui last updated on 28/Mar/23 $$\bigtriangleup{AEF}\:\:\:{EF}^{\mathrm{2}} ={AE}^{\mathrm{2}} +{AF}^{\mathrm{2}} \\ $$$${AE}={R}\:;{AF}=\mathrm{2}{R}−{r}\:\:\:\left({r}={FB}\right) \\ $$$$\Rightarrow\left({R}+{r}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} +\left(\mathrm{2}{R}−{r}\right)^{\mathrm{2}}…

Question-58986

Question Number 58986 by ajfour last updated on 02/May/19 Commented by mr W last updated on 02/May/19 $${do}\:{you}\:{mean}\:{maximum}\:{area}? \\ $$$${i}\:{think}\:{there}\:{is}\:{no}\:{maximum}\:{or} \\ $$$${minimum}\:{perimeter},\:{since} \\ $$$${max}.\:{p}\:\rightarrow\:\mathrm{4}{r},\:{when}\:{C}\rightarrow{M}\:{and}\:{B}\rightarrow{N}. \\…