Menu Close

Category: Geometry

Question-189843

Question Number 189843 by normans last updated on 22/Mar/23 Answered by HeferH last updated on 22/Mar/23 $$\mathrm{2}\alpha\:+\:\mathrm{x}\:=\:\mathrm{180}° \\ $$$$\mathrm{62}°\:+\:\mathrm{56}°\:+\:\alpha\:=\:\mathrm{180}° \\ $$$$\alpha\:=\:\mathrm{180}°\:−\mathrm{118}°=\mathrm{62}° \\ $$$$\:\mathrm{x}\:=\:\mathrm{180}°\:−\:\mathrm{124}°\:=\:\mathrm{56}° \\ $$…

Question-124291

Question Number 124291 by bramlexs22 last updated on 02/Dec/20 Answered by liberty last updated on 02/Dec/20 $${The}\:{triangle}\:{area}\:{satisfies}\:{L}_{\Delta} =\:\frac{{r}}{\mathrm{2}}\left({a}+{b}+{c}\right) \\ $$$${and}\:{we}\:{have}\:{r}\:=\:\frac{\mathrm{2}{L}\Delta}{{a}+{b}+{c}} \\ $$$${so}\:{the}\:{area}\:{of}\:{the}\:{largest}\:{circle}\:{that}\:{can}\:{be} \\ $$$${cut}\:{from}\:{triangle}\:{is}\:\frac{\mathrm{4}\pi{L}_{\Delta} ^{\mathrm{2}}…

Question-189807

Question Number 189807 by normans last updated on 22/Mar/23 Answered by a.lgnaoui last updated on 22/Mar/23 $$\: \\ $$$${Angle}\:{entre}\:{verticale}\:{et}\:{p}\:{q}\left(\alpha={arc}\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}=\frac{\pi}{\mathrm{6}}\right) \\ $$$${Angle}\:{entre}\:{Eq}\:{et}\:{qr}\:{est}\:\frac{\pi}{\mathrm{4}} \\ $$$$\frac{\pi}{\mathrm{6}}+{X}+\frac{\pi}{\mathrm{4}}=\pi\Rightarrow\:\:{X}=\frac{\mathrm{7}\pi}{\mathrm{12}} \\ $$…