Question Number 209393 by Shrodinger last updated on 08/Jul/24 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ln}\left({tanx}\right)}{\mathrm{1}+{tanx}}{dx} \\ $$ Commented by Frix last updated on 09/Jul/24 $$\mathrm{I}\:\mathrm{think}\:\mathrm{it}'\mathrm{s}\:−\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$…
Question Number 209353 by alcohol last updated on 08/Jul/24 Answered by Berbere last updated on 08/Jul/24 $${f}\left({x}+{y}\right)={f}\left({x}\right).{f}\left({y}\right) \\ $$$${f}\left({x}\right)={f}\left(\frac{{x}}{\mathrm{2}}+\frac{{x}}{\mathrm{2}}\right)=\left({f}\left(\frac{{x}}{\mathrm{2}}\right)\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\forall{x}\in\mathbb{R}\:{f}\left({x}\right)\geqslant\mathrm{0} \\ $$$${f}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right)\:\forall{y}\in\mathbb{R}\:{fixe}\:{x}\rightarrow{f}\left({x}+{y}\right)\:{est}\:{derivable} \\…
Question Number 209332 by efronzo1 last updated on 07/Jul/24 Answered by Frix last updated on 07/Jul/24 $${x}^{\mathrm{3}} −\mathrm{8}{x}^{\mathrm{2}} +\left(\mathrm{16}−{k}\right){x}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\mathrm{0}\:\:{x}_{\mathrm{2}} =\mathrm{4}−\sqrt{{k}}\:\:{x}_{\mathrm{3}} =\mathrm{4}+\sqrt{{k}} \\…
Question Number 209217 by mnjuly1970 last updated on 04/Jul/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{calculate}}\:: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}=\:\int_{\mathrm{0}\:} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}\:+\:{x}^{\:\mathrm{2}} \right)^{\:\mathrm{2}} }\:{dx}\:=\:?\:\:\:\:\: \\ $$$$ \\ $$…
Question Number 208900 by KradecaNaLukcheta last updated on 26/Jun/24 $${Does}\:{anyone}\:{know}\:{of}\:{an}\:{intuition} \\ $$$${behind}\:{the}\:{integral}\:{form}\:{of}\:{the} \\ $$$${remainder}\:{in}\:{Taylor}'{s}\:{theorem}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 208871 by Shrodinger last updated on 26/Jun/24 $${L}=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{\mathrm{4}−\mathrm{3}{x}}{\mathrm{4}+\mathrm{5}{x}}}{dx} \\ $$ Answered by Sutrisno last updated on 26/Jun/24 $${misal} \\ $$$$\sqrt{\frac{\mathrm{4}−\mathrm{3}{x}}{\mathrm{4}+\mathrm{5}{x}}}={p}\rightarrow{x}=\frac{−\mathrm{4}{p}^{\mathrm{2}} +\mathrm{4}}{\mathrm{5}{p}^{\mathrm{2}}…
Question Number 208842 by NasaSara last updated on 24/Jun/24 $${does}\:{the}\:{rule}\:{of}\:{odd}\:{and}\:{even}\:{functions}\: \\ $$$${can}\:{be}\:{applied}\:{with}\:{improper}\:{integration}? \\ $$$${I}=\int_{−\infty} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {dx}\: \\ $$$${while}\:\:{f}\left({x}\right)=\:{xe}^{−{x}^{\mathrm{2}} } \:{is}\:{odd} \\ $$$${then}\:{I}\:=\mathrm{0} \\…
Question Number 208791 by MATHEMATICSAM last updated on 23/Jun/24 $$\mathrm{If}\:\int\:\frac{{dx}}{{x}^{\mathrm{3}} \left(\mathrm{1}\:+\:{x}^{\mathrm{6}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=\:{xf}\left({x}\right).\left(\mathrm{1}\:+\:{x}^{\mathrm{6}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:+\:{C}\: \\ $$$$\mathrm{where}\:{C}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{of}\:\mathrm{integration}\:\mathrm{then} \\ $$$$\mathrm{find}\:{f}\left({x}\right). \\ $$ Commented by mr W…
Question Number 208805 by Mastermind last updated on 23/Jun/24 $$\mathrm{Integrate}: \\ $$$$\left(\mathrm{xdz}\:−\:\mathrm{zdx}\right)\:−\:\mathrm{a}^{\mathrm{2}} \left(\mathrm{2xzdz}\:−\:\mathrm{z}^{\mathrm{2}} \mathrm{dx}\right)\:+\:\mathrm{2x}^{\mathrm{3}} \:=\:\mathrm{0} \\ $$ Commented by mr W last updated on 23/Jun/24…
Question Number 208692 by Ghisom last updated on 21/Jun/24 $$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}{x}\mathrm{ln}\:\mathrm{sin}\:{x}\:{dx}=? \\ $$ Answered by Berbere last updated on 21/Jun/24 $${ln}\left({sin}\left({x}\right)\right)=−{ln}\left(\mathrm{2}\right)−\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{{cos}\left(\mathrm{2}{kx}\right)}{{k}} \\ $$$${proof}\:{ln}\left({sin}\left({x}\right)\right)={Re}\left({ln}\left({sin}\left({x}\right)\right)\right.…