Menu Close

Category: Integration

Question-209353

Question Number 209353 by alcohol last updated on 08/Jul/24 Answered by Berbere last updated on 08/Jul/24 $${f}\left({x}+{y}\right)={f}\left({x}\right).{f}\left({y}\right) \\ $$$${f}\left({x}\right)={f}\left(\frac{{x}}{\mathrm{2}}+\frac{{x}}{\mathrm{2}}\right)=\left({f}\left(\frac{{x}}{\mathrm{2}}\right)\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\forall{x}\in\mathbb{R}\:{f}\left({x}\right)\geqslant\mathrm{0} \\ $$$${f}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right)\:\forall{y}\in\mathbb{R}\:{fixe}\:{x}\rightarrow{f}\left({x}+{y}\right)\:{est}\:{derivable} \\…

Question-209332

Question Number 209332 by efronzo1 last updated on 07/Jul/24 Answered by Frix last updated on 07/Jul/24 $${x}^{\mathrm{3}} −\mathrm{8}{x}^{\mathrm{2}} +\left(\mathrm{16}−{k}\right){x}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\mathrm{0}\:\:{x}_{\mathrm{2}} =\mathrm{4}−\sqrt{{k}}\:\:{x}_{\mathrm{3}} =\mathrm{4}+\sqrt{{k}} \\…

calculate-I-0-tan-1-x-1-x-2-2-dx-

Question Number 209217 by mnjuly1970 last updated on 04/Jul/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{calculate}}\:: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}=\:\int_{\mathrm{0}\:} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}\:+\:{x}^{\:\mathrm{2}} \right)^{\:\mathrm{2}} }\:{dx}\:=\:?\:\:\:\:\: \\ $$$$ \\ $$…

L-0-1-4-3x-4-5x-dx-

Question Number 208871 by Shrodinger last updated on 26/Jun/24 $${L}=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{\mathrm{4}−\mathrm{3}{x}}{\mathrm{4}+\mathrm{5}{x}}}{dx} \\ $$ Answered by Sutrisno last updated on 26/Jun/24 $${misal} \\ $$$$\sqrt{\frac{\mathrm{4}−\mathrm{3}{x}}{\mathrm{4}+\mathrm{5}{x}}}={p}\rightarrow{x}=\frac{−\mathrm{4}{p}^{\mathrm{2}} +\mathrm{4}}{\mathrm{5}{p}^{\mathrm{2}}…

does-the-rule-of-odd-and-even-functions-can-be-applied-with-improper-integration-I-xe-x-2-dx-while-f-x-xe-x-2-is-odd-then-I-0-

Question Number 208842 by NasaSara last updated on 24/Jun/24 $${does}\:{the}\:{rule}\:{of}\:{odd}\:{and}\:{even}\:{functions}\: \\ $$$${can}\:{be}\:{applied}\:{with}\:{improper}\:{integration}? \\ $$$${I}=\int_{−\infty} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {dx}\: \\ $$$${while}\:\:{f}\left({x}\right)=\:{xe}^{−{x}^{\mathrm{2}} } \:{is}\:{odd} \\ $$$${then}\:{I}\:=\mathrm{0} \\…

If-dx-x-3-1-x-6-2-3-xf-x-1-x-6-1-3-C-where-C-is-constant-of-integration-then-find-f-x-

Question Number 208791 by MATHEMATICSAM last updated on 23/Jun/24 $$\mathrm{If}\:\int\:\frac{{dx}}{{x}^{\mathrm{3}} \left(\mathrm{1}\:+\:{x}^{\mathrm{6}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=\:{xf}\left({x}\right).\left(\mathrm{1}\:+\:{x}^{\mathrm{6}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:+\:{C}\: \\ $$$$\mathrm{where}\:{C}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{of}\:\mathrm{integration}\:\mathrm{then} \\ $$$$\mathrm{find}\:{f}\left({x}\right). \\ $$ Commented by mr W…

0-pi-2-xln-sin-x-dx-

Question Number 208692 by Ghisom last updated on 21/Jun/24 $$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}{x}\mathrm{ln}\:\mathrm{sin}\:{x}\:{dx}=? \\ $$ Answered by Berbere last updated on 21/Jun/24 $${ln}\left({sin}\left({x}\right)\right)=−{ln}\left(\mathrm{2}\right)−\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{{cos}\left(\mathrm{2}{kx}\right)}{{k}} \\ $$$${proof}\:{ln}\left({sin}\left({x}\right)\right)={Re}\left({ln}\left({sin}\left({x}\right)\right)\right.…