Menu Close

Category: Integration

Question-127952

Question Number 127952 by rs4089 last updated on 03/Jan/21 Answered by Ar Brandon last updated on 03/Jan/21 $$\Psi=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{2}} \sqrt{\frac{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}\mathrm{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \left\{\frac{\mathrm{x}^{\mathrm{2}}…

Question-127948

Question Number 127948 by rs4089 last updated on 03/Jan/21 Answered by mathmax by abdo last updated on 04/Jan/21 $$\mathrm{A}_{\mathrm{N}} =\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{\mathrm{2}\pi\mathrm{x}} −\mathrm{1}}{\mathrm{e}^{\mathrm{2}\pi\mathrm{x}} +\mathrm{1}}\left(\frac{\mathrm{1}}{\mathrm{x}}−\frac{\mathrm{x}}{\mathrm{N}^{\mathrm{2}} \:+\mathrm{x}^{\mathrm{2}}…