Menu Close

Category: Integration

nice-calculus-calculate-0-e-t-t-2-j-0-t-dt-where-j-v-x-x-v-n-0-1-n-x-2n-2-2n

Question Number 126349 by mnjuly1970 last updated on 19/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:\:\:{calculate}\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega\overset{???} {=}\int_{\mathrm{0}} ^{\:\:\infty} {e}^{\:−{t}} \:{t}^{\:\mathrm{2}} \:{j}_{\mathrm{0}} \left(\:{t}\:\right){dt} \\ $$$$\:\:\:\:\:{where}\::\:\:{j}_{\left({v}\right)} \left({x}\right)={x}^{{v}} \underset{{n}=\mathrm{0}} {\overset{\:\infty}…

e-w-w-n-1-dw-n-N-

Question Number 60797 by arcana last updated on 25/May/19 $$\int\frac{{e}^{{w}} }{{w}^{{n}+\mathrm{1}} }{dw},\:{n}\in\mathbb{N} \\ $$ Commented by MJS last updated on 26/May/19 $$\mathrm{this}\:\mathrm{reminds}\:\mathrm{me}\:\mathrm{of}\:\Gamma\left({x}\right)=\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{e}^{−{t}} {t}^{{x}−\mathrm{1}}…

advanced-calculus-prove-that-1-x-2-x-x-2-2-x-1-pi-cos-pix-2-

Question Number 126323 by mnjuly1970 last updated on 19/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{calculus}… \\ $$$$\:\:\:\:\:{prove}\:\:\:{that}\:::: \\ $$$$\:\:\:\:\:\frac{\Gamma\left(\frac{\mathrm{1}−{x}}{\mathrm{2}}\right)\Gamma\left({x}\right)}{\Gamma\left(\frac{{x}}{\mathrm{2}}\right)}\:\overset{???} {=}\:\frac{\mathrm{2}^{{x}−\mathrm{1}} \sqrt{\pi}}{{cos}\left(\frac{\pi{x}}{\mathrm{2}}\right)} \\ $$$$ \\ $$ Terms of Service Privacy Policy…

2-2e-2-ln-e-x-e-x-9-x-dx-

Question Number 126316 by benjo_mathlover last updated on 19/Dec/20 $$\:\:\underset{\:\sqrt{\mathrm{2}}} {\overset{\mathrm{2}{e}^{\sqrt{\mathrm{2}}} } {\int}}\mathrm{ln}\:\left(\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{9}\sqrt{{x}}}\right){dx}\:?\: \\ $$ Commented by liberty last updated on 19/Dec/20 $$\int\:\left(\mathrm{ln}\left(\:{e}^{{x}}…

dx-1-x-2-1-x-2-

Question Number 126314 by benjo_mathlover last updated on 19/Dec/20 $$\:\:\int\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:? \\ $$ Answered by Dwaipayan Shikari last updated on 19/Dec/20 $$\int\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\:\:\:\:\:\:\:{x}={sin}\theta…