Menu Close

Category: Integration

Calculate-the-area-enclosed-by-the-curve-1-x-2-2-1-y-2-2-1-

Question Number 208693 by Frix last updated on 21/Jun/24 $$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{area}\:\mathrm{enclosed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\left(\frac{\mathrm{1}}{{x}}−\mathrm{2}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{{y}}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{1} \\ $$ Answered by mr W last updated on 21/Jun/24 $$\frac{\mathrm{1}}{{x}}−\mathrm{2}={u}\:\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}+{u}}…

2-1-3-1-x-3x-2-4x-1-7x-2-4x-1-dx-Exact-solution-needed-

Question Number 208733 by Frix last updated on 22/Jun/24 $$\mathrm{2}\underset{\frac{\mathrm{1}}{\mathrm{3}}} {\overset{\mathrm{1}} {\int}}\frac{{x}\sqrt{−\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{1}}}{\mathrm{7}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}}{dx}=? \\ $$$$\mathrm{Exact}\:\mathrm{solution}\:\mathrm{needed}. \\ $$ Answered by Ghisom last updated on 24/Jun/24…

Question-208661

Question Number 208661 by efronzo1 last updated on 20/Jun/24 $$\:\:\downharpoonleft\underline{\:} \\ $$ Answered by Berbere last updated on 20/Jun/24 $$\mathrm{3}{x}+\mathrm{4}={u}\Rightarrow{dx}=\frac{{du}}{\mathrm{3}} \\ $$$$\int_{\mathrm{10}} ^{\mathrm{25}} {f}\left({u}\right).\frac{{du}}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{3}}\left\{.\int_{\mathrm{10}} ^{\mathrm{15}}…

Question-208652

Question Number 208652 by efronzo1 last updated on 20/Jun/24 Answered by Berbere last updated on 20/Jun/24 $${a},{b}\:{solution}\:{of}\:−\mathrm{3}{x}^{\mathrm{3}} +\mathrm{2}{x}={c} \\ $$$${S}_{\mathrm{1}} =\int_{\mathrm{0}} ^{{a}} {c}−\left(\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{3}} \right)=\int_{{a}} ^{{b}}…

calculons-i-0-1-dxdydz-1-xyz-

Question Number 208423 by lepuissantcedricjunior last updated on 15/Jun/24 $$\:\:\:\boldsymbol{{calculons}}\: \\ $$$$\boldsymbol{{i}}=\int\int\int_{\left[\mathrm{0};\mathrm{1}\right]} \frac{\boldsymbol{{dxdydz}}}{\mathrm{1}−\boldsymbol{{xyz}}} \\ $$ Answered by Berbere last updated on 15/Jun/24 $$=\int\int\left[−\frac{\mathrm{1}}{{xy}}{ln}\left(\mathrm{1}−{xy}\right)\right]{dydx} \\ $$$${xy}={u}\Rightarrow{dy}=\frac{{du}}{{x}}…

0-4-pi-ln-cosx-dx-

Question Number 208334 by Shrodinger last updated on 12/Jun/24 $$\int_{\mathrm{0}} ^{\frac{\mathrm{4}}{\pi}} {ln}\left({cosx}\right){dx} \\ $$ Commented by Frix last updated on 12/Jun/24 $$\mathrm{This}\:\mathrm{question}\:\mathrm{has}\:\mathrm{been}\:\mathrm{answered}\:\left(\mathrm{208280}\right) \\ $$ Terms…

x-2-3-x-2-x-1-x-2-1-2-dx-

Question Number 208316 by Tawa11 last updated on 11/Jun/24 $$\int\:\frac{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{3}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}\:\:+\:\:\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx} \\ $$ Answered by Frix last updated on 11/Jun/24 $$\int\frac{{x}^{\mathrm{2}} +\mathrm{3}}{{x}^{\mathrm{2}}…