Question Number 209691 by efronzo1 last updated on 18/Jul/24 $$\:\:\:\int\left(\mathrm{2x}^{\mathrm{3x}^{\mathrm{2}} +\mathrm{4x}−\mathrm{7}} \right)\left(\mathrm{log}\:_{\mathrm{2}} \:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3x}−\mathrm{7}\right)\right)\mathrm{e}^{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}−\mathrm{5}} \:\mathrm{dx}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 209687 by uuuuu last updated on 18/Jul/24 Answered by lepuissantcedricjunior last updated on 18/Jul/24 $$\boldsymbol{{k}}=\int\frac{\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}}{\boldsymbol{{si}}\overset{\mathrm{4}} {\boldsymbol{{n}x}}+\boldsymbol{{co}}\overset{\mathrm{2}} {\boldsymbol{{s}x}}}\boldsymbol{{dx}} \\ $$$$\:\:=\int\frac{\mathrm{2}\boldsymbol{{sinxcosx}}}{\boldsymbol{{co}}\overset{\mathrm{4}} {\boldsymbol{{s}x}}\left(\mathrm{1}+\boldsymbol{{ta}}\overset{\mathrm{4}} {\boldsymbol{{n}x}}\right)}\boldsymbol{{dx}} \\ $$$$\:\:=\int\frac{\mathrm{2}\boldsymbol{{sinx}}}{\boldsymbol{{co}}\overset{\mathrm{3}}…
Question Number 209557 by Spillover last updated on 14/Jul/24 $${Given}\: \\ $$$$\:\int_{\mathrm{2}} ^{\mathrm{4}} \left({ax}^{{n}} +\mathrm{1}\right){dx}=\mathrm{58}\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \left({ax}^{{n}} +\mathrm{1}\right){dx}=\mathrm{10} \\ $$$${find}\:{the}\:{value}\:{of}\:\:{a}\:\:\:{and}\:\:{n} \\ $$ Answered by mr…
Question Number 209544 by Spillover last updated on 13/Jul/24 $$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{4}} \frac{{dx}}{\mid{x}−\mathrm{1}\mid+\mid{x}−\mathrm{2}\mid+\mid{x}−\mathrm{4}\mid} \\ $$$$ \\ $$ Answered by Frix last updated on 14/Jul/24…
Question Number 209543 by Spillover last updated on 13/Jul/24 $$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\frac{{dx}}{{x}^{\mathrm{4}} +\mathrm{4}} \\ $$$$ \\ $$ Commented by Frix last updated on 14/Jul/24 $$\mathrm{Done}\:\mathrm{several}\:\mathrm{times}\:\mathrm{before}…
Question Number 209484 by efronzo1 last updated on 11/Jul/24 $$\:\:\:\:\:\:\:\underset{\mathrm{e}^{\mathrm{x}} } {\overset{\mathrm{e}^{\mathrm{2}} } {\int}}\:\left(\frac{\mathrm{1}}{\mathrm{2}+\mathrm{ln}\:\mathrm{t}}\:\right)\mathrm{dt}\:=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 209393 by Shrodinger last updated on 08/Jul/24 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ln}\left({tanx}\right)}{\mathrm{1}+{tanx}}{dx} \\ $$ Commented by Frix last updated on 09/Jul/24 $$\mathrm{I}\:\mathrm{think}\:\mathrm{it}'\mathrm{s}\:−\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$…
Question Number 209353 by alcohol last updated on 08/Jul/24 Answered by Berbere last updated on 08/Jul/24 $${f}\left({x}+{y}\right)={f}\left({x}\right).{f}\left({y}\right) \\ $$$${f}\left({x}\right)={f}\left(\frac{{x}}{\mathrm{2}}+\frac{{x}}{\mathrm{2}}\right)=\left({f}\left(\frac{{x}}{\mathrm{2}}\right)\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\forall{x}\in\mathbb{R}\:{f}\left({x}\right)\geqslant\mathrm{0} \\ $$$${f}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right)\:\forall{y}\in\mathbb{R}\:{fixe}\:{x}\rightarrow{f}\left({x}+{y}\right)\:{est}\:{derivable} \\…
Question Number 209332 by efronzo1 last updated on 07/Jul/24 Answered by Frix last updated on 07/Jul/24 $${x}^{\mathrm{3}} −\mathrm{8}{x}^{\mathrm{2}} +\left(\mathrm{16}−{k}\right){x}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\mathrm{0}\:\:{x}_{\mathrm{2}} =\mathrm{4}−\sqrt{{k}}\:\:{x}_{\mathrm{3}} =\mathrm{4}+\sqrt{{k}} \\…
Question Number 209217 by mnjuly1970 last updated on 04/Jul/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{calculate}}\:: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}=\:\int_{\mathrm{0}\:} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}\:+\:{x}^{\:\mathrm{2}} \right)^{\:\mathrm{2}} }\:{dx}\:=\:?\:\:\:\:\: \\ $$$$ \\ $$…