Question Number 60675 by perlman last updated on 24/May/19 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left[\frac{{ln}^{\mathrm{2}} \left({sin}\left({x}\right)\right)}{\pi^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({sinx}\right)}\right]\frac{{ln}\left({cos}\left({x}\right)\right)}{{tan}\left({x}\right)}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 60670 by Meritguide1234 last updated on 24/May/19 Commented by Meritguide1234 last updated on 24/May/19 [.]=greatest integer Function Commented by rahul 19 last updated on 24/May/19…
Question Number 126203 by frc2crc last updated on 18/Dec/20 $$\overset{\infty} {\int}_{\mathrm{0}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{{s}} +{x}^{\mathrm{2}{s}} } \\ $$ Answered by Olaf last updated on 18/Dec/20 $$ \\…
Question Number 126205 by mathmax by abdo last updated on 18/Dec/20 $$\mathrm{calculate}\:\int\int\:_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\:\:\frac{\mathrm{dxdy}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:+\mathrm{xy}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 60662 by aliesam last updated on 23/May/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 60659 by Mr X pcx last updated on 23/May/19 $${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$ Commented by maxmathsup by imad last updated on…
Question Number 60658 by Mr X pcx last updated on 23/May/19 $${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$ Commented by maxmathsup by imad last updated on…
Question Number 126183 by bobhans last updated on 18/Dec/20 $$\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{e}^{\mathrm{2}\pi{x}} −\mathrm{1}}{{e}^{\mathrm{2}\pi{x}} +\mathrm{1}}\:\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{N}^{\mathrm{2}} +{x}^{\mathrm{2}} }\right)\:{dx} \\ $$ Answered by Olaf last updated on 19/Dec/20…
Question Number 126179 by mathmax by abdo last updated on 17/Dec/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{e}^{−\mathrm{2x}} \:\mathrm{actan}\:\left(\mathrm{3x}+\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\mathrm{calculste}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)=\Sigma\:\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \:\mathrm{determine}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{a}_{\mathrm{n}} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}…
Question Number 60637 by rajesh4661kumar@gamil.com last updated on 23/May/19 Commented by maxmathsup by imad last updated on 23/May/19 $$\int\:\:\:\:\frac{{sinx}}{\mathrm{1}−{sinx}}\:{dx}\:=−\int\frac{\mathrm{1}−{sinx}\:−\mathrm{1}}{\mathrm{1}−{sinx}}{dx}\:=−{x}\:+\int\:\:\frac{{dx}}{\mathrm{1}−{sinx}} \\ $$$$\int\:\:\frac{{dx}}{\mathrm{1}−{sinx}}\:=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}} \:\:\:\:\:\:\int\:\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\mathrm{2}\:\int\:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} −\mathrm{2}{t}}\:=\mathrm{2}\:\int\:\:\frac{{dt}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}}…