Menu Close

Category: Integration

Question-60534

Question Number 60534 by aliesam last updated on 21/May/19 Commented by maxmathsup by imad last updated on 22/May/19 $${we}\:{have}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{e}^{{x}^{\mathrm{2}} } }\:=\mathrm{2}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}}…

Question-126068

Question Number 126068 by benjo_mathlover last updated on 17/Dec/20 Answered by liberty last updated on 17/Dec/20 $${h}\left({x}\right)=\int_{\mathrm{1}} ^{\:{x}} {f}\left({t}\right){dt}\:\Leftrightarrow\:{h}\left(\mathrm{1}\right)=\int_{\mathrm{1}} ^{\:\mathrm{1}} {f}\left({t}\right){dt}\:=\:\mathrm{0} \\ $$ Terms of…

Show-that-0-1-Li-2-x-log-x-1-x-dx-3-16-4-Goodluck-

Question Number 126065 by Lordose last updated on 17/Dec/20 $$ \\ $$$$\mathrm{Show}\:\mathrm{that}:: \\ $$$$\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}}\mathrm{dx}\:=\:−\frac{\mathrm{3}}{\mathrm{16}}\zeta\left(\mathrm{4}\right) \\ $$$$\mathrm{Goodluck} \\ $$ Answered by mnjuly1970 last…

calculate-W-2x-2-3y-2-x-y-dxdy-with-W-x-y-R-2-0-lt-x-lt-1-and-0-lt-y-lt-1-

Question Number 60506 by prof Abdo imad last updated on 21/May/19 $${calculate}\:\int\int_{{W}} \:\:\:\:\:\frac{\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}{y}^{\mathrm{2}} }}{{x}+{y}}\:{dxdy} \\ $$$${with}\:{W}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}<{x}<\mathrm{1}\:{and}\:\mathrm{0}<{y}<\mathrm{1}.\right. \\ $$ Commented by Mr X pcx…

let-f-t-0-3-t-x-x-2-dx-with-t-1-4-1-find-a-explicit-form-of-f-t-2-find-also-g-t-0-3-dx-t-x-x-2-3-calculate-0-3-1-x-x-2-dx-0-3-2-x-x-2-dx-0-

Question Number 60498 by abdo mathsup 649 cc last updated on 21/May/19 $${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{3}} \sqrt{{t}\:+{x}\:+{x}^{\mathrm{2}} }{dx}\:\:{with}\:{t}\:\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{also}\:{g}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{3}} \:\:\:\frac{{dx}}{\:\sqrt{{t}+{x}\:+{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{\mathrm{0}}…

Question-191567

Question Number 191567 by leandrosriv02 last updated on 26/Apr/23 Answered by Frix last updated on 26/Apr/23 $$\int\frac{\sqrt{{x}}−\mathrm{1}}{{x}^{\pi} }{dx}=\int{x}^{\frac{\mathrm{1}}{\mathrm{2}}−\pi} {dx}−\int{x}^{−\pi} {dx} \\ $$$$\mathrm{Which}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{using}\:\int{x}^{{r}} {dx}=\frac{{x}^{{r}+\mathrm{1}} }{{r}+\mathrm{1}} \\…