Question Number 125922 by mnjuly1970 last updated on 15/Dec/20 $$\:\:\:\:\:\:\:\:\:…{advanced}\:\:\:{calculus}… \\ $$$$\:\:\:\:\:\:\:{evaluate}\::::\:\:\:\Omega\overset{???} {=}\int_{\mathrm{0}} ^{\:\infty} {cos}\left({x}^{\mathrm{2}} \right){ln}\left({x}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::::::::::\:\:\:\:\:\: \\ $$ Answered by mathmax by abdo…
Question Number 60384 by aliesam last updated on 20/May/19 $$\int{e}^{{coth}^{−\mathrm{1}} \left({x}\right)} \:{dx}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 125919 by Eric002 last updated on 15/Dec/20 $$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{dx}\:{dy}\:{dz}\:{dt}}{\left({cosh}\left({x}\right)+{cosh}\left({y}\right)+{cosh}\left({z}\right)+{cosh}\left({t}\right)\right)^{\mathrm{4}} } \\ $$$$=\frac{\mathrm{7}\zeta\left(\mathrm{3}\right)−\mathrm{6}}{\mathrm{12}} \\ $$ Terms of…
Question Number 60376 by rahul 19 last updated on 20/May/19 Commented by rahul 19 last updated on 20/May/19 $${dx}\:^{\ast} \\ $$ Commented by Mr X…
Question Number 125911 by Lordose last updated on 15/Dec/20 $$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{xln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\mathrm{dx} \\ $$ Answered by mathmax by abdo last updated on 15/Dec/20 $$\mathrm{A}\:=\int_{\mathrm{0}}…
Question Number 125897 by john_santu last updated on 15/Dec/20 $$\:\:\:\int\:\frac{{dx}}{\mathrm{2}+{x}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:?\: \\ $$ Commented by MJS_new last updated on 15/Dec/20 $$\mathrm{the}\:\mathrm{path}\:\mathrm{is} \\ $$$${t}=\frac{\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}}\:\Leftrightarrow\:{x}=\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}\:\rightarrow\:{dx}=−\frac{{x}^{\mathrm{2}}…
Question Number 125895 by john_santu last updated on 15/Dec/20 $$\:\:\:\:\int\:\frac{{dx}}{\mathrm{tan}\:^{\mathrm{4}} {x}+\mathrm{1}}\:? \\ $$ Answered by Dwaipayan Shikari last updated on 15/Dec/20 $$\int\frac{{dx}}{{tan}^{\mathrm{4}} {x}+\mathrm{1}}\:\:\:\:\:\:\:\:\:{tanx}={t}\Rightarrow{sec}^{\mathrm{2}} {x}=\frac{{dt}}{{dx}} \\…
Question Number 125893 by bramlexs22 last updated on 15/Dec/20 $$\:\:\:\:\:\:\:\int\:\frac{\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}{\left(\mathrm{1}+\sqrt{\mathrm{sin}\:\mathrm{2}{x}}\right)^{\mathrm{3}} }\:{dx}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 125889 by bramlexs22 last updated on 15/Dec/20 $$\:\:\int\:\frac{\mathrm{tan}\:^{\mathrm{3}} {x}}{\:\sqrt{\mathrm{sec}\:{x}}}\:{dx}\:?\: \\ $$ Answered by bobhans last updated on 15/Dec/20 $$\int\:\frac{\mathrm{tan}\:{x}\left(\mathrm{sec}\:^{\mathrm{2}} {x}−\mathrm{1}\right)}{\:\sqrt{\mathrm{sec}\:{x}}}\:{dx}\:= \\ $$$$\:\left[\:\mathrm{sec}\:{x}\:=\:{u}^{\mathrm{2}} \:\Rightarrow\mathrm{tan}\:{x}\:{dx}\:=\:\frac{\mathrm{2}\:{du}}{{u}}\:\right]…
Question Number 60346 by necx1 last updated on 20/May/19 $$\int{x}\mathrm{sec}\:^{\mathrm{3}} {xdx} \\ $$$${please}\:{help} \\ $$ Commented by kaivan.ahmadi last updated on 20/May/19 $${first}\:\int{sec}^{\mathrm{3}} {x}\:{dx}=\left(\frac{{tgx}}{{cosx}}+{ln}\mid{secx}+{tgx}\mid\right)/\mathrm{2} \\…