Menu Close

Category: Integration

Question-60036

Question Number 60036 by sitangshu17 last updated on 17/May/19 Answered by tanmay last updated on 17/May/19 $${x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{6}>\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)>\mathrm{0} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{6} \\ $$$${when}\:…

x-i-dx-

Question Number 60027 by aliesam last updated on 17/May/19 $$\int{x}^{{i}} {dx}=? \\ $$ Answered by MJS last updated on 17/May/19 $$\int{x}^{\mathrm{i}} {dx}=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{i}}{x}^{\mathrm{1}+\mathrm{i}} +{C}=\frac{\mathrm{1}−\mathrm{i}}{\mathrm{2}}{x}^{\mathrm{1}+\mathrm{i}} \\ $$…

let-U-n-0-e-n-x-2-x-2-3-2-dx-1-find-U-n-interms-of-n-2-calvulate-lim-n-U-n-3-study-the-serie-U-n-

Question Number 59999 by Mr X pcx last updated on 16/May/19 $${let}\:{U}_{{n}} \:\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{n}\left[{x}^{\mathrm{2}} \right]} }{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{calvulate}\:\:{lim}_{{n}\rightarrow+\infty} \:\:\:{U}_{{n}}…

Question-59991

Question Number 59991 by selimatas01 last updated on 16/May/19 Commented by Mr X pcx last updated on 16/May/19 $${let}\:\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cosx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:{dx}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\int_{−\infty}…