Question Number 125462 by mnjuly1970 last updated on 11/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\clubsuit{advanced}\:\:{calculus}\clubsuit… \\ $$$$\:\:\:\blacklozenge\blacklozenge\:{prove}\:{that}: \\ $$$$\:\:\:\:\:\mathrm{I}=\int_{\mathrm{1}} ^{\:\infty} \frac{\left({t}^{\mathrm{4}} −\mathrm{6}{t}^{\mathrm{2}} +\mathrm{1}\right){ln}\left({ln}\left({t}\right)\right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{3}} }{dt}=\frac{\mathrm{2G}}{\pi} \\ $$$$\:\:\mathrm{G}\::\:\:{catalan}\:\:{constant}… \\ $$ Answered…
Question Number 59926 by rahul 19 last updated on 16/May/19 Commented by rahul 19 last updated on 16/May/19 $$\mathrm{5},\mathrm{6}. \\ $$ Answered by tanmay last…
Question Number 125458 by mnjuly1970 last updated on 11/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{advanced}\:\:{calculus}… \\ $$$$\:\:\:\:\:\:\:\:{evaluate}\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left\{\:\frac{\zeta\:\left(\mathrm{2}{n}\:\right)}{\mathrm{2}^{\:{n}} }\:\right\}\:=?? \\ $$$$ \\ $$ Answered by Dwaipayan Shikari…
Question Number 190987 by Rupesh123 last updated on 15/Apr/23 Answered by 07049753053 last updated on 16/Apr/23 $$\boldsymbol{\mathrm{let}}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} =\boldsymbol{\mathrm{u}}\:\boldsymbol{\mathrm{dx}}=\frac{\boldsymbol{\mathrm{du}}}{\mathrm{2}\sqrt{\boldsymbol{\mathrm{u}}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{e}}^{−\boldsymbol{\mathrm{u}}} \boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{u}}\right)}{\boldsymbol{\mathrm{u}}\sqrt{\boldsymbol{\mathrm{u}}}}\boldsymbol{\mathrm{du}}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \boldsymbol{\mathrm{u}}^{−\frac{\mathrm{3}}{\mathrm{2}}}…
Question Number 190984 by Spillover last updated on 15/Apr/23 $$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{3}} \int_{\mathrm{0}} ^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} \mathrm{ydydx}\: \\ $$$$ \\ $$ Answered by a.lgnaoui last…
Question Number 190983 by Spillover last updated on 15/Apr/23 $$ \\ $$$$\:\:\:\:\int_{\boldsymbol{{x}}= } ^{ } \int_{\boldsymbol{{y}}= } ^{ −\boldsymbol{{x}}} \int_{\boldsymbol{{z}}= } ^{ −\boldsymbol{{x}}−\boldsymbol{{y}}} \boldsymbol{{xdzdydx}} \\…
Question Number 125440 by bramlexs22 last updated on 11/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\int\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{3}}{\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5}\right)}\:{dx}\: \\ $$ Answered by Ar Brandon last updated on 11/Dec/20 $$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{2x}^{\mathrm{2}} −\mathrm{3x}−\mathrm{3}}{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{5}\right)}=\frac{\mathrm{a}}{\mathrm{x}−\mathrm{1}}+\frac{\mathrm{bx}+\mathrm{c}}{\mathrm{x}^{\mathrm{2}}…
Question Number 59906 by Sardor2211 last updated on 15/May/19 $$\int\left(\mathrm{2x}−\mathrm{1}\right)\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 59904 by Sardor2211 last updated on 15/May/19 $$\left(\mathrm{2x}−\mathrm{1}\hat {\right)}\mathrm{20} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 59905 by Sardor2211 last updated on 15/May/19 $$\int\left(\mathrm{2x}−\mathrm{1}\hat {\right)}\mathrm{20} \\ $$ Commented by maxmathsup by imad last updated on 16/May/19 $${if}\:{you}\:{mean}\:{I}\:=\int\:\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{20}} {dx}\:\Rightarrow{I}\:=\int\:\sum_{{k}=\mathrm{0}} ^{\mathrm{20}}…