Menu Close

Category: Integration

L-0-1-4-3x-4-5x-dx-

Question Number 208871 by Shrodinger last updated on 26/Jun/24 $${L}=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{\mathrm{4}−\mathrm{3}{x}}{\mathrm{4}+\mathrm{5}{x}}}{dx} \\ $$ Answered by Sutrisno last updated on 26/Jun/24 $${misal} \\ $$$$\sqrt{\frac{\mathrm{4}−\mathrm{3}{x}}{\mathrm{4}+\mathrm{5}{x}}}={p}\rightarrow{x}=\frac{−\mathrm{4}{p}^{\mathrm{2}} +\mathrm{4}}{\mathrm{5}{p}^{\mathrm{2}}…

does-the-rule-of-odd-and-even-functions-can-be-applied-with-improper-integration-I-xe-x-2-dx-while-f-x-xe-x-2-is-odd-then-I-0-

Question Number 208842 by NasaSara last updated on 24/Jun/24 $${does}\:{the}\:{rule}\:{of}\:{odd}\:{and}\:{even}\:{functions}\: \\ $$$${can}\:{be}\:{applied}\:{with}\:{improper}\:{integration}? \\ $$$${I}=\int_{−\infty} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {dx}\: \\ $$$${while}\:\:{f}\left({x}\right)=\:{xe}^{−{x}^{\mathrm{2}} } \:{is}\:{odd} \\ $$$${then}\:{I}\:=\mathrm{0} \\…

If-dx-x-3-1-x-6-2-3-xf-x-1-x-6-1-3-C-where-C-is-constant-of-integration-then-find-f-x-

Question Number 208791 by MATHEMATICSAM last updated on 23/Jun/24 $$\mathrm{If}\:\int\:\frac{{dx}}{{x}^{\mathrm{3}} \left(\mathrm{1}\:+\:{x}^{\mathrm{6}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=\:{xf}\left({x}\right).\left(\mathrm{1}\:+\:{x}^{\mathrm{6}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:+\:{C}\: \\ $$$$\mathrm{where}\:{C}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{of}\:\mathrm{integration}\:\mathrm{then} \\ $$$$\mathrm{find}\:{f}\left({x}\right). \\ $$ Commented by mr W…

0-pi-2-xln-sin-x-dx-

Question Number 208692 by Ghisom last updated on 21/Jun/24 $$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}{x}\mathrm{ln}\:\mathrm{sin}\:{x}\:{dx}=? \\ $$ Answered by Berbere last updated on 21/Jun/24 $${ln}\left({sin}\left({x}\right)\right)=−{ln}\left(\mathrm{2}\right)−\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{{cos}\left(\mathrm{2}{kx}\right)}{{k}} \\ $$$${proof}\:{ln}\left({sin}\left({x}\right)\right)={Re}\left({ln}\left({sin}\left({x}\right)\right)\right.…

Calculate-the-area-enclosed-by-the-curve-1-x-2-2-1-y-2-2-1-

Question Number 208693 by Frix last updated on 21/Jun/24 $$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{area}\:\mathrm{enclosed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\left(\frac{\mathrm{1}}{{x}}−\mathrm{2}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{{y}}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{1} \\ $$ Answered by mr W last updated on 21/Jun/24 $$\frac{\mathrm{1}}{{x}}−\mathrm{2}={u}\:\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}+{u}}…

2-1-3-1-x-3x-2-4x-1-7x-2-4x-1-dx-Exact-solution-needed-

Question Number 208733 by Frix last updated on 22/Jun/24 $$\mathrm{2}\underset{\frac{\mathrm{1}}{\mathrm{3}}} {\overset{\mathrm{1}} {\int}}\frac{{x}\sqrt{−\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{1}}}{\mathrm{7}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}}{dx}=? \\ $$$$\mathrm{Exact}\:\mathrm{solution}\:\mathrm{needed}. \\ $$ Answered by Ghisom last updated on 24/Jun/24…

Question-208661

Question Number 208661 by efronzo1 last updated on 20/Jun/24 $$\:\:\downharpoonleft\underline{\:} \\ $$ Answered by Berbere last updated on 20/Jun/24 $$\mathrm{3}{x}+\mathrm{4}={u}\Rightarrow{dx}=\frac{{du}}{\mathrm{3}} \\ $$$$\int_{\mathrm{10}} ^{\mathrm{25}} {f}\left({u}\right).\frac{{du}}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{3}}\left\{.\int_{\mathrm{10}} ^{\mathrm{15}}…

Question-208652

Question Number 208652 by efronzo1 last updated on 20/Jun/24 Answered by Berbere last updated on 20/Jun/24 $${a},{b}\:{solution}\:{of}\:−\mathrm{3}{x}^{\mathrm{3}} +\mathrm{2}{x}={c} \\ $$$${S}_{\mathrm{1}} =\int_{\mathrm{0}} ^{{a}} {c}−\left(\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{3}} \right)=\int_{{a}} ^{{b}}…