Menu Close

Category: Integration

Question-190841

Question Number 190841 by Rupesh123 last updated on 12/Apr/23 Answered by ARUNG_Brandon_MBU last updated on 12/Apr/23 $${I}=\int_{\mathrm{0}} ^{\pi} \frac{{xdx}}{\mathrm{1}+\mathrm{cos}\alpha\mathrm{sin}{x}}=\int_{\mathrm{0}} ^{\pi} \frac{\pi−{x}}{\mathrm{1}+\mathrm{cos}\alpha\mathrm{sin}{x}}{dx} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} \frac{\pi}{\mathrm{1}+\mathrm{cos}\alpha\mathrm{sin}{x}}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}}…

Question-190812

Question Number 190812 by Mahliyo last updated on 12/Apr/23 Commented by Frix last updated on 12/Apr/23 $$\mathrm{Use}\:\mathrm{3}\:\mathrm{steps} \\ $$$$\mathrm{1}.\:{t}={x}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{2}.\:{u}=\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{2}{t}}{\:\sqrt{\mathrm{5}}} \\ $$$$\mathrm{3}.\:{v}=\mathrm{tan}\:\frac{{u}}{\mathrm{2}} \\…

Question-190809

Question Number 190809 by safojontoshtemirov last updated on 12/Apr/23 Commented by Frix last updated on 12/Apr/23 $$\mathrm{Use}\:\mathrm{2}\:\mathrm{steps}: \\ $$$$\mathrm{1}.\:{t}={x}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{2}.\:{u}=\mathrm{2}{t}+\sqrt{\mathrm{4}{t}^{\mathrm{2}} −\mathrm{1}} \\ $$ Commented…

calculate-u-nm-0-e-nx-ln-1-e-mx-dx-find-n-0-and-m-0-u-nm-

Question Number 125233 by mathmax by abdo last updated on 09/Dec/20 $$\mathrm{calculate}\:\mathrm{u}_{\mathrm{nm}} =\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{nx}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{mx}} \right)\mathrm{dx} \\ $$$$\mathrm{find}\:\sum_{\mathrm{n}\geqslant\mathrm{0}\:\mathrm{and}\:\mathrm{m}\geqslant\mathrm{0}} \:\:\mathrm{u}_{\mathrm{nm}} \\ $$ Terms of Service…

dx-x-2-5-2-

Question Number 190740 by mathlove last updated on 10/Apr/23 $$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{5}\right)^{\mathrm{2}} }=? \\ $$ Answered by gatocomcirrose last updated on 10/Apr/23 $$\mathrm{x}=\sqrt{\mathrm{5}}\mathrm{tg}\theta\Rightarrow\mathrm{dx}=\sqrt{\mathrm{5}}\mathrm{sec}^{\mathrm{2}} \theta\mathrm{d}\theta \\ $$$$\int\frac{\sqrt{\mathrm{5}}\mathrm{sec}^{\mathrm{2}}…