Question Number 124957 by Study last updated on 07/Dec/20 Commented by Study last updated on 07/Dec/20 $${please}\:{help}\:{me}?? \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 190487 by stvnmaxi last updated on 03/Apr/23 Answered by aleks041103 last updated on 04/Apr/23 $${A}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {y}^{\mathrm{2}} {dxdy}\:=\left(\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}}…
Question Number 124922 by mathmax by abdo last updated on 07/Dec/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculste}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{develop}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$…
Question Number 124920 by mathmax by abdo last updated on 07/Dec/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}^{\mathrm{n}} } \mathrm{dx}\: \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 124921 by mathmax by abdo last updated on 07/Dec/20 $$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\mathrm{z}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}\:\:\mathrm{with}\:\mathrm{z}\:\mathrm{complex} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 124919 by mathmax by abdo last updated on 07/Dec/20 $$\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}} \mathrm{arctan}\left(\mathrm{x}\right)\mathrm{dx}\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{nstural} \\ $$ Commented by mindispower last updated on 07/Dec/20…
Question Number 59381 by Karan last updated on 09/May/19 $$\:\:\int\frac{{xdx}}{\mathrm{sin}\:{x}}\:=\:? \\ $$ Commented by Mr X pcx last updated on 11/May/19 $${let}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{{x}} \:\:\frac{{t}}{{sint}}{dt}\:{we}\:{have}\: \\…
Question Number 124906 by Mammadli last updated on 06/Dec/20 $$\int\boldsymbol{{sinx}}^{\mathrm{3}} \boldsymbol{{dx}}=? \\ $$ Commented by Dwaipayan Shikari last updated on 06/Dec/20 $$\int{sinx}^{\mathrm{3}} {dx}\:\:\:\:\:\:\:\:\:\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\int{e}^{{ix}^{\mathrm{3}}…
Question Number 124903 by Algoritm last updated on 06/Dec/20 Answered by MJS_new last updated on 06/Dec/20 $$\mathrm{just}\:\mathrm{decompose}\:\mathrm{and}\:\mathrm{solve},\:\mathrm{no}\:\mathrm{special} \\ $$$$\mathrm{knowledge}\:\mathrm{necessary}.\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}: \\ $$$$\frac{{x}−\mathrm{1}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mid{x}+\mathrm{1}\mid\:+{C} \\ $$$$\mathrm{now}\:\mathrm{try}\:\mathrm{to}\:\mathrm{reach}\:\mathrm{this}\:\mathrm{for}\:\mathrm{yourself}…
Question Number 124888 by mnjuly1970 last updated on 06/Dec/20 $$:::::\:\:{prove}\:{that}\: \\ $$$$\:\:::::\:\:\:\:\:\:\phi=\int_{\mathrm{0}} ^{\:\infty} \frac{{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}=\frac{\pi}{\:\sqrt{\mathrm{2}}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$ Answered by mnjuly1970…