Menu Close

Category: Integration

let-f-x-0-ln-1-xt-2-2-t-2-dt-determine-a-explicit-form-of-f-x-2-calculate-0-ln-1-3x-2-2-t-2-dt-

Question Number 59278 by Mr X pcx last updated on 07/May/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{\mathrm{2}+{t}^{\mathrm{2}} }\:{dt} \\ $$$${determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+\mathrm{3}{x}^{\mathrm{2}} \right)}{\mathrm{2}+{t}^{\mathrm{2}} }{dt} \\…

let-f-x-0-1-ln-1-xe-t-dt-1-find-a-explicit-form-of-f-x-2-calculate-0-1-ln-1-2e-t-dt-3-developp-f-x-at-integr-serie-if-x-lt-1-

Question Number 59275 by Mr X pcx last updated on 07/May/19 $${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{xe}^{−{t}} \right){dt} \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+\mathrm{2}{e}^{−{t}} \right){dt} \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\left({x}\right){at}\:{integr}\:{serie}\:{if}\:\mid{x}\mid<\mathrm{1} \\…

If-f-x-2x-0-lt-x-lt-1-3-x-1-6x-1-1-lt-x-lt-2-find-0-2-f-x-dx-

Question Number 124794 by benjo_mathlover last updated on 06/Dec/20 $${If}\:{f}\left({x}\right)=\begin{cases}{\mathrm{2}{x}\:;\:\mathrm{0}<{x}<\mathrm{1}}\\{\mathrm{3}\:;\:{x}=\mathrm{1}\:}\\{\mathrm{6}{x}−\mathrm{1}\:;\:\mathrm{1}<{x}<\mathrm{2}}\end{cases} \\ $$$${find}\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:{f}\left({x}\right)\:{dx}\:? \\ $$ Answered by TITA last updated on 06/Dec/20 $$\int_{\mathrm{0}} ^{\mathrm{2}}…

let-f-x-0-pi-2-ln-1-xcost-dt-with-x-lt-1-1-developp-f-at-integr-serie-2-find-a-explicit-form-of-f-x-3-find-the-values-of-integrals-0-pi-2-ln-1-cost-dt-and-0-pi-2-ln-1-cost-dt-4-

Question Number 59247 by maxmathsup by imad last updated on 06/May/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}−{xcost}\right){dt}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{values}\:{of}\:{integrals}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}−{cost}\right){dt}\:\:{and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{cost}\right){dt} \\…

Question-190318

Question Number 190318 by Rupesh123 last updated on 31/Mar/23 Answered by som(math1967) last updated on 31/Mar/23 $$\:{let}\:\mathrm{2}{x}−{x}^{\mathrm{2}} −\mathrm{1}={t}^{\mathrm{2}} \\ $$$$\:\left(\mathrm{2}−\mathrm{2}{x}\right){dx}=\mathrm{2}{tdt} \\ $$$$\int\frac{\mathrm{2}{tdt}}{{t}}=\mathrm{2}{t}+{C}=\mathrm{2}\sqrt{\mathrm{2}{x}−{x}^{\mathrm{2}} −\mathrm{1}}+{C} \\ $$…