Question Number 208632 by necx122 last updated on 19/Jun/24 $$\int{e}^{−{x}^{\mathrm{2}} } {dx} \\ $$$${could}\:{this}\:{be}\:{integrated}\:{by}\:{part}?\:{What} \\ $$$${approach}\:{would}\:{most}\:{likely}\:{be}\:{suitable} \\ $$$${for}\:{this}\:{integral}? \\ $$$$ \\ $$ Commented by Tinku…
Question Number 208473 by Ghisom last updated on 17/Jun/24 $$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}{x}\mathrm{ln}\:\mathrm{sin}\:{x}\:{dx}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 208423 by lepuissantcedricjunior last updated on 15/Jun/24 $$\:\:\:\boldsymbol{{calculons}}\: \\ $$$$\boldsymbol{{i}}=\int\int\int_{\left[\mathrm{0};\mathrm{1}\right]} \frac{\boldsymbol{{dxdydz}}}{\mathrm{1}−\boldsymbol{{xyz}}} \\ $$ Answered by Berbere last updated on 15/Jun/24 $$=\int\int\left[−\frac{\mathrm{1}}{{xy}}{ln}\left(\mathrm{1}−{xy}\right)\right]{dydx} \\ $$$${xy}={u}\Rightarrow{dy}=\frac{{du}}{{x}}…
Question Number 208335 by Shrodinger last updated on 12/Jun/24 $$\int_{−\mathrm{1}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{t}^{\mathrm{4}} }{dt} \\ $$ Answered by Frix last updated on 12/Jun/24 $$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\sqrt{\mathrm{1}−{t}^{\mathrm{4}}…
Question Number 208334 by Shrodinger last updated on 12/Jun/24 $$\int_{\mathrm{0}} ^{\frac{\mathrm{4}}{\pi}} {ln}\left({cosx}\right){dx} \\ $$ Commented by Frix last updated on 12/Jun/24 $$\mathrm{This}\:\mathrm{question}\:\mathrm{has}\:\mathrm{been}\:\mathrm{answered}\:\left(\mathrm{208280}\right) \\ $$ Terms…
Question Number 208316 by Tawa11 last updated on 11/Jun/24 $$\int\:\frac{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{3}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}\:\:+\:\:\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx} \\ $$ Answered by Frix last updated on 11/Jun/24 $$\int\frac{{x}^{\mathrm{2}} +\mathrm{3}}{{x}^{\mathrm{2}}…
Question Number 208280 by Shrodinger last updated on 10/Jun/24 $${L}=\int_{\mathrm{0}} ^{\frac{\mathrm{4}}{\pi}} {ln}\left({cosx}\right){dx} \\ $$ Answered by Berbere last updated on 10/Jun/24 $$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{ln}\left(\frac{{cos}\left({x}\right)}{{sin}\left({x}\right)}.{sin}\left({x}\right){cos}\left({x}\right)\right){dx}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}}…
Question Number 208235 by efronzo1 last updated on 08/Jun/24 Answered by som(math1967) last updated on 08/Jun/24 $$\:{here}\:{f}\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right) \\ $$$$\:\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}{dx} \\ $$$$=\underset{\mathrm{2}} {\overset{\mathrm{4}}…
Question Number 208245 by Shrodinger last updated on 08/Jun/24 $${K}=\int_{\mathrm{0}} ^{\frac{\mathrm{4}}{\pi}} {ln}\left({cosx}\right){dx} \\ $$ Answered by mathzup last updated on 09/Jun/24 $${K}=\int_{\mathrm{0}} ^{\frac{\mathrm{4}}{\pi}} {ln}\left(\frac{{e}^{{ix}} +{e}^{−{ix}}…
Question Number 208176 by mnjuly1970 last updated on 07/Jun/24 $$ \\ $$$$\:\:\:\:\:\boldsymbol{{Find}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{the}} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{folloing}}\:\boldsymbol{{integral}}. \\ $$$$\:\:\:\:\:\:\: \\ $$$$\begin{array}{|c|}{\:\:\:\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} \:\frac{\:\mathrm{1}}{\mathrm{1}\:+\:\sqrt[{\mathrm{3}}]{\:\boldsymbol{{cosx}}}}\:\boldsymbol{{dx}}\:=\:?\:\:}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\: \\ $$ Commented…