Menu Close

Category: Integration

let-f-x-pi-4-pi-3-dt-2-xsint-1-find-a-explicit-form-of-f-x-2-determine-also-g-x-pi-4-pi-3-sint-2-xsint-2-dt-3-find-the-value-of-pi-4-pi-3-dt-2-3sint-and-

Question Number 58487 by Mr X pcx last updated on 23/Apr/19 $${let}\:{f}\left({x}\right)\:=\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\frac{{dt}}{\mathrm{2}+{xsint}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){determine}\:{also}\:{g}\left({x}\right)=\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\frac{{sint}}{\left(\mathrm{2}+{xsint}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\frac{{dt}}{\mathrm{2}+\mathrm{3}{sint}}…

1-x-2-2-x-4-8x-2-4-dx-2-Shortest-distance-between-the-parabolas-y-2-4x-and-y-2-2x-6-is-

Question Number 58478 by rahul 19 last updated on 23/Apr/19 $$\left\{\mathrm{1}\right\}\:\:\:\int\frac{{x}^{\mathrm{2}} −\mathrm{2}}{{x}^{\mathrm{4}} +\mathrm{8}{x}^{\mathrm{2}} +\mathrm{4}}\:{dx}\:=\:? \\ $$$$\left\{\mathrm{2}\right\}\:\:{Shortest}\:{distance}\:{between}\:{the} \\ $$$${parabolas}\:{y}^{\mathrm{2}} =\mathrm{4}{x}\:{and}\:{y}^{\mathrm{2}} =\mathrm{2}{x}−\mathrm{6}\:{is}\:? \\ $$ Commented by maxmathsup…

dx-tan-x-1-3-

Question Number 124004 by john_santu last updated on 30/Nov/20 $$\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}}\:?\: \\ $$ Answered by liberty last updated on 30/Nov/20 $${T}\:=\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}}\:;\:\left[\:{let}\:{u}^{\mathrm{3}} =\mathrm{tan}\:^{\mathrm{2}} {x}\:\wedge\:{dx}\:=\frac{\mathrm{3}{u}^{\mathrm{2}} }{\mathrm{2}{u}^{\mathrm{3}/\mathrm{2}} \:\left({u}^{\mathrm{3}} +\mathrm{1}\right)}{du}\:\right]…

0-x-2-1-x-2-2-dx-

Question Number 123998 by john_santu last updated on 30/Nov/20 $$\:\int_{\:\mathrm{0}} ^{\:\infty} \:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\: \\ $$ Answered by liberty last updated on 30/Nov/20 $$\:{substituting}\:{x}\:=\:\mathrm{tan}\:{q}\:{with}\:{upper}\:{limit}\:\frac{\pi}{\mathrm{2}}…

Question-123977

Question Number 123977 by mnjuly1970 last updated on 29/Nov/20 Answered by mathmax by abdo last updated on 29/Nov/20 $$\mathrm{let}\:\mathrm{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cosx}\right)\mathrm{dx}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{A}\:=−\frac{\pi}{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\right)\:\mathrm{also} \\ $$$$\mathrm{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\frac{\mathrm{e}^{\mathrm{ix}}…

xe-x-2-2-dx-

Question Number 189496 by Tawa11 last updated on 17/Mar/23 $$\int\:\mathrm{xe}^{\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}} \:\mathrm{dx} \\ $$ Answered by BaliramKumar last updated on 18/Mar/23 $${let}\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:=\:{y} \\ $$$$\frac{\mathrm{2}{x}}{\mathrm{2}}\:=\:\frac{{dy}}{{dx}}\:\Rightarrow\:{xdx}\:=\:{dy}…