Menu Close

Category: Integration

Advanced-calculus-Find-the-value-of-the-following-series-n-1-1-n-n-n-2-n-z-n-1-1-n-z-

Question Number 188381 by mnjuly1970 last updated on 28/Feb/23 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{Advanced}\:\:\mathrm{calculus} \\ $$$$ \\ $$$$\:\:\:\:\:\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{value}\:\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{series}. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\left(−\mathrm{1}\right)^{\:{n}} \:\zeta\:\left(\:{n}\:\right)}{{n}.\:\mathrm{2}^{\:{n}} }\:=\:? \\…

Question-188380

Question Number 188380 by Shlock last updated on 28/Feb/23 Answered by SEKRET last updated on 28/Feb/23 $$\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{t}}\right)=\int_{\mathrm{0}} ^{\:\boldsymbol{\pi}} \frac{\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\boldsymbol{\mathrm{t}}\centerdot\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{a}}\right)\centerdot\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)\right)}{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)}\boldsymbol{\mathrm{dx}} \\ $$$$\:\boldsymbol{\mathrm{f}}\:'\:\left(\boldsymbol{\mathrm{t}}\right)=\:\int_{\mathrm{0}} ^{\:\boldsymbol{\pi}} \:\frac{\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{a}}\right)\centerdot\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)\centerdot\left(\mathrm{1}+\boldsymbol{\mathrm{t}}\centerdot\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{a}}\right)\centerdot\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)\right)}\boldsymbol{\mathrm{dx}} \\ $$$$\:\boldsymbol{\mathrm{f}}\:'\:\left(\boldsymbol{\mathrm{t}}\right)=\:\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{a}}\right)\centerdot\int_{\mathrm{0}}…

dx-x-1-3-x-2-5-1-4-

Question Number 122838 by bemath last updated on 20/Nov/20 $$\:\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{4}}]{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{5}} }}\:? \\ $$ Answered by liberty last updated on 20/Nov/20 $$\:{because}\:\sqrt[{\mathrm{4}}]{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{5}} }\:=\:\left({x}−\mathrm{1}\right)\left({x}+\mathrm{2}\right)\:\sqrt[{\mathrm{4}}]{\frac{{x}+\mathrm{2}}{{x}−\mathrm{1}}} \\…

Question-122828

Question Number 122828 by bemath last updated on 20/Nov/20 Answered by bobhans last updated on 20/Nov/20 $$\:{solve}\:\underset{\pi/\mathrm{4}} {\overset{\pi/\mathrm{3}} {\int}}\:\frac{\sqrt{\mathrm{tan}\:{x}}}{\mathrm{sin}\:\mathrm{2}{x}}\:{dx}\:.\: \\ $$$$\:{Solution}\::\: \\ $$$${B}\left({x}\right)=\:\int\:\frac{\sqrt{\mathrm{tan}\:{x}}}{\mathrm{2sin}\:{x}\:\mathrm{cos}\:{x}}\:{dx}\: \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{{dx}}{\:\sqrt{\mathrm{sin}\:{x}}\:\mathrm{cos}\:{x}\:\sqrt{\mathrm{cos}\:{x}}}…

Question-122823

Question Number 122823 by bemath last updated on 19/Nov/20 Answered by liberty last updated on 19/Nov/20 $$\:{L}\left({x}\right)\:=\:\int\:\frac{\mathrm{1}}{\:\sqrt{{x}\left(\mathrm{1}+\sqrt{{x}}\right)}}\:{dx}\:=\:\int\:\frac{\mathrm{1}}{\:\sqrt{{x}}\:\sqrt{\mathrm{1}+\sqrt{{x}}}\:}\:{dx} \\ $$$${let}\:{u}\:=\:\mathrm{1}+\sqrt{{x}}\:\Rightarrow{du}\:=\:\frac{{dx}}{\mathrm{2}\sqrt{{x}}} \\ $$$${L}\left({x}\right)\:=\:\mathrm{2}\int\:\frac{\mathrm{1}}{\:\sqrt{{u}}}\:{du}\:=\:\mathrm{4}\sqrt{{u}}\:+\:{c}\:\: \\ $$$${L}\left({x}\right)=\:\mathrm{4}\sqrt{\mathrm{1}+\sqrt{{x}}}\:+\:{c}\: \\ $$…

Question-122822

Question Number 122822 by bemath last updated on 19/Nov/20 Answered by liberty last updated on 20/Nov/20 $${I}=\int\:{x}\:\mathrm{tan}\:{x}\:\mathrm{sec}\:^{\mathrm{2}} {x}\:{dx}\:=\:\int\:{x}\:\mathrm{tan}\:{x}\:{d}\left(\mathrm{tan}\:{x}\right) \\ $$$${by}\:{D}.{I}\:{method}\:\rightarrow\begin{cases}{{u}={x}\rightarrow{du}={dx}}\\{{v}=\int\mathrm{tan}\:{x}\:{d}\left(\mathrm{tan}\:{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}\:^{\mathrm{2}} {x}}\end{cases} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}{x}.\mathrm{tan}\:^{\mathrm{2}} {x}−\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{tan}\:^{\mathrm{2}} {x}\:{dx}\:…

x-1-x-2-dx-

Question Number 57241 by Aditya789 last updated on 01/Apr/19 $$\int\frac{×\sqrt{\mathrm{x}+\mathrm{1}}}{\mathrm{x}+\mathrm{2}}\mathrm{dx} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19 $${x}+\mathrm{1}={t}^{\mathrm{2}} \rightarrow{dx}=\mathrm{2}{tdt} \\ $$$$\int\frac{\left({t}^{\mathrm{2}} −\mathrm{1}\right){t}×\mathrm{2}{tdt}}{{t}^{\mathrm{2}} +\mathrm{1}}…

let-f-x-0-sin-xt-2-1-t-4-1-dt-1-find-a-explicit-form-of-f-x-2-let-g-x-0-t-2-cos-xt-2-1-t-4-1-dt-find-a-explicit-form-of-g-x-3-calculate-0-sin-

Question Number 57237 by maxmathsup by imad last updated on 31/Mar/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{sin}\left({xt}^{\mathrm{2}} −\mathrm{1}\right)}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{let}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{2}} \:{cos}\left({xt}^{\mathrm{2}} −\mathrm{1}\right)}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:{dt}…