Menu Close

Category: Integration

0-1-2-x-sin-1-x-2-1-x-4-dx-

Question Number 122751 by bemath last updated on 19/Nov/20 $$\:\underset{\mathrm{0}} {\overset{\mathrm{1}/\sqrt{\mathrm{2}}} {\int}}\:\frac{{x}\:\mathrm{sin}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:{dx}\:?\: \\ $$ Answered by liberty last updated on 19/Nov/20 $$\:\:{Let}\:\mathrm{sin}^{−\mathrm{1}}…

0-3-dx-3-x-x-2-1-

Question Number 122748 by bemath last updated on 19/Nov/20 $$\:\:\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:\frac{{dx}}{\left(\mathrm{3}−{x}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\:? \\ $$ Answered by MJS_new last updated on 19/Nov/20 $$\int\frac{{dx}}{\left(\mathrm{3}−{x}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}= \\…

Question-122734

Question Number 122734 by bemath last updated on 19/Nov/20 Answered by liberty last updated on 19/Nov/20 $$\:{Just}\:{applying}\:{partial}\:{faction} \\ $$$$\:\frac{\mathrm{3}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{4}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)}\:=\:\frac{{Ax}+{B}}{{x}^{\mathrm{2}} +\mathrm{1}}+\:\frac{{Cx}+{D}}{{x}^{\mathrm{2}} +\mathrm{2}}…

let-A-n-n-n-x-1-x-x-dx-with-n-natural-integr-and-n-1-1-find-A-n-interms-of-n-2-find-nature-of-the-serie-A-n-

Question Number 57194 by maxmathsup by imad last updated on 31/Mar/19 $${let}\:\:{A}_{{n}} =\int_{{n}} ^{{n}} \:\frac{\left[\sqrt{{x}+\mathrm{1}}\right]−\left[\sqrt{{x}}\right]}{{x}}\:{dx}\:\:\:{with}\:{n}\:{natural}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{A}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right){find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{A}_{{n}} \\ $$ Commented by maxmathsup…

advanced-math-two-simple-and-nice-integrals-prove-that-1-0-sin-e-x-ln-x-x-dx-0-2-0-sin-x-2-2-l

Question Number 122713 by mnjuly1970 last updated on 19/Nov/20 $$\:\:\:\:\:\:\:\:\:\:\:\:…\:\:{advanced}\:\:{math}\:… \\ $$$$\:\:\:\:\:{two}\:\:{simple}\:{and}\:{nice}\:{integrals}: \\ $$$$\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega_{\mathrm{1}} =\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({e}^{−\gamma} {x}\right){ln}\left({x}\right)}{{x}}\:{dx}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Omega_{\mathrm{2}} \:=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}…

dx-x-a-b-x-

Question Number 122697 by john santu last updated on 19/Nov/20 $$\:\:\int\:\frac{{dx}}{\:\sqrt{\left({x}−{a}\right)\left({b}−{x}\right)}}\:? \\ $$ Answered by liberty last updated on 19/Nov/20 $$\:\:{Solve}\:\varphi\left({x}\right)=\int\:\frac{{dx}}{\:\sqrt{\left({x}−{a}\right)\left({b}−{x}\right)}}\:? \\ $$$$\:\:\:{Solution}\::\: \\ $$$$\:{letting}\:{x}\:=\:{a}\mathrm{cos}\:^{\mathrm{2}}…

nice-integral-prove-that-0-cos-pinx-1-x-2-picoth-pix-x-dx-piln-1-e-pin-m-n-

Question Number 122671 by mnjuly1970 last updated on 18/Nov/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:{integral}… \\ $$$$\:\:\:{prove}\:{that}\:\::: \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} {cos}\left(\pi{nx}\right)\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\pi{coth}\left(\pi{x}\right)}{{x}}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\overset{???} {=}\pi{ln}\left(\mathrm{1}−{e}^{−\pi{n}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:.{m}.{n}. \\ $$…

nice-calculus-In-AB-C-prove-sin-A-2-sin-B-2-sin-C-2-1-8-max-cos-A-2-cos-B-2-cos-C-2-

Question Number 122636 by mnjuly1970 last updated on 18/Nov/20 $$\:\:\:\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:{In}\:\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\:\:{prove}\:::\: \\ $$$$\:\:\:\ast:\:\:{sin}\left(\frac{\mathrm{A}}{\mathrm{2}}\right){sin}\left(\frac{\mathrm{B}}{\mathrm{2}}\right){sin}\left(\frac{\mathrm{C}}{\mathrm{2}}\right)\leqslant\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$……………………. \\ $$$$\:\:\:\:\ast\ast::\:\:\:{max}\left({cos}\left(\frac{\mathrm{A}}{\mathrm{2}}\right){cos}\left(\frac{\mathrm{B}}{\mathrm{2}}\right){cos}\left(\frac{\mathrm{C}}{\mathrm{2}}\right)\right)=? \\ $$$$\:\:\:\:\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:…