Question Number 207424 by MetaLahor1999 last updated on 14/May/24 $${f}_{{n}} \left({x}\right):=\int{e}^{\frac{\mathrm{2}{x}}{\mathrm{3}}} \frac{{cos}\left({x}\right)}{\:\left({cos}\left({x}\right)+{sin}\left({x}\right)\right)^{\frac{{n}}{\mathrm{3}}} }{dx}=…? \\ $$$${for}\:{n}=\mathrm{1},\:{i}\:{found}\: \\ $$$$\:\:\:\:\:\:{f}_{\mathrm{1}} \left({x}\right)=\frac{\mathrm{3}}{\mathrm{4}}{e}^{\frac{\mathrm{2}{x}}{\mathrm{3}}} \left({cos}\left({x}\right)+{sin}\left({x}\right)\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\:{C} \\ $$$${is}\:{there}\:{any}\:{ideas}\:{for}\:{a}\:{general}\:{case}\:{or} \\ $$$${the}\:{case}\:{n}=\mathrm{2}? \\…
Question Number 207383 by Shrodinger last updated on 13/May/24 $$\int\frac{{ln}\left({x}^{\mathrm{2}} +{sin}\left({sin}\left({e}^{{x}} \right)\right)\right)}{\:\sqrt{{x}+{tan}\left({ln}\left({x}\right)\right)}}{dx} \\ $$ Commented by Frix last updated on 13/May/24 $$\mathrm{Impossible}. \\ $$ Commented…
Question Number 207382 by efronzo1 last updated on 13/May/24 Answered by sniper237 last updated on 13/May/24 $$\overset{{X}=^{\mathrm{3}} \sqrt{{x}−\mathrm{2}}} {=}\underset{{X}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{X}^{\mathrm{6}} +\mathrm{2}{X}^{\mathrm{3}} +{X}}{\:^{\mathrm{3}} \sqrt{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}{X}^{\mathrm{3}} +\mathrm{4}}−{X}^{\mathrm{3}} \sqrt{\mathrm{3}{X}^{\mathrm{3}}…
Question Number 207352 by NasaSara last updated on 12/May/24 $${calculate}: \\ $$$$\:\int_{\frac{\Pi}{\mathrm{4}}} ^{\frac{\Pi}{\mathrm{2}}} \lfloor{cot}\left({x}\right)\rfloor\:{dx} \\ $$ Commented by NasaSara last updated on 12/May/24 $${thank}\:{you} \\…
Question Number 207359 by Shrodinger last updated on 12/May/24 $$\int\frac{{ln}\left({x}^{\mathrm{2}} +{sin}\left({sin}\left({e}^{{x}} \right)\right)\right)}{\:\sqrt{{x}+{tan}\left({ln}\left({x}\right)\right)}}{dx} \\ $$ Answered by Berbere last updated on 12/May/24 $${it}\:{semms}\:{non}\:{close}\:{forme}\: \\ $$ Commented…
Question Number 207354 by NasaSara last updated on 12/May/24 Commented by mr W last updated on 12/May/24 $${there}\:{are}\:{integrals}\:{like}\:{following} \\ $$$$\int\int…\int\int{f}\left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,…,{x}_{{n}} \right){dx}_{\mathrm{1}} {dx}_{\mathrm{2}} …{dx}_{{n}}…
Question Number 207099 by tri26112004 last updated on 06/May/24 Answered by Berbere last updated on 06/May/24 $$=\int_{−\infty} ^{\infty} \frac{{e}^{{i}\pi{ax}} }{\left({x}^{\mathrm{2}} +\beta^{\mathrm{2}} \right)^{{n}+\mathrm{1}} }{dx};{a}\in\mathbb{R}_{+} \\ $$$${if}\:{Imx}\geqslant\mathrm{0}\:\mid{e}^{{i}\pi{ax}}…
Question Number 207054 by Ghisom last updated on 05/May/24 $$\Omega_{\alpha} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{x}^{\alpha} \sqrt{−{x}\mathrm{ln}\:{x}}\:{dx}=? \\ $$ Answered by Frix last updated on 05/May/24 $$\alpha>−\frac{\mathrm{3}}{\mathrm{2}} \\…
Question Number 206962 by Ghisom last updated on 01/May/24 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\sqrt{\mathrm{1}−{x}}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{1}−{x}}}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}−{x}}}}{dx}=? \\ $$ Answered by lepuissantcedricjunior last updated on 02/May/24 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\sqrt{\mathrm{1}−\boldsymbol{{x}}}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{1}−\boldsymbol{{x}}}}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}−\boldsymbol{{x}}}}}\boldsymbol{{dx}}=\boldsymbol{{k}} \\…
Question Number 206892 by mathzup last updated on 29/Apr/24 $${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$ Answered by Frix last updated on 29/Apr/24 $${t}={x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}} \\…