Menu Close

Category: Integration

f-n-x-e-2x-3-cos-x-cos-x-sin-x-n-3-dx-for-n-1-i-found-f-1-x-3-4-e-2x-3-cos-x-sin-x-2-3-C-is-there-any-ideas-for-a-general-case-or-the-case-n-2-

Question Number 207424 by MetaLahor1999 last updated on 14/May/24 $${f}_{{n}} \left({x}\right):=\int{e}^{\frac{\mathrm{2}{x}}{\mathrm{3}}} \frac{{cos}\left({x}\right)}{\:\left({cos}\left({x}\right)+{sin}\left({x}\right)\right)^{\frac{{n}}{\mathrm{3}}} }{dx}=…? \\ $$$${for}\:{n}=\mathrm{1},\:{i}\:{found}\: \\ $$$$\:\:\:\:\:\:{f}_{\mathrm{1}} \left({x}\right)=\frac{\mathrm{3}}{\mathrm{4}}{e}^{\frac{\mathrm{2}{x}}{\mathrm{3}}} \left({cos}\left({x}\right)+{sin}\left({x}\right)\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\:{C} \\ $$$${is}\:{there}\:{any}\:{ideas}\:{for}\:{a}\:{general}\:{case}\:{or} \\ $$$${the}\:{case}\:{n}=\mathrm{2}? \\…

Question-207382

Question Number 207382 by efronzo1 last updated on 13/May/24 Answered by sniper237 last updated on 13/May/24 $$\overset{{X}=^{\mathrm{3}} \sqrt{{x}−\mathrm{2}}} {=}\underset{{X}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{X}^{\mathrm{6}} +\mathrm{2}{X}^{\mathrm{3}} +{X}}{\:^{\mathrm{3}} \sqrt{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}{X}^{\mathrm{3}} +\mathrm{4}}−{X}^{\mathrm{3}} \sqrt{\mathrm{3}{X}^{\mathrm{3}}…

Question-207354

Question Number 207354 by NasaSara last updated on 12/May/24 Commented by mr W last updated on 12/May/24 $${there}\:{are}\:{integrals}\:{like}\:{following} \\ $$$$\int\int…\int\int{f}\left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,…,{x}_{{n}} \right){dx}_{\mathrm{1}} {dx}_{\mathrm{2}} …{dx}_{{n}}…

Question-207099

Question Number 207099 by tri26112004 last updated on 06/May/24 Answered by Berbere last updated on 06/May/24 $$=\int_{−\infty} ^{\infty} \frac{{e}^{{i}\pi{ax}} }{\left({x}^{\mathrm{2}} +\beta^{\mathrm{2}} \right)^{{n}+\mathrm{1}} }{dx};{a}\in\mathbb{R}_{+} \\ $$$${if}\:{Imx}\geqslant\mathrm{0}\:\mid{e}^{{i}\pi{ax}}…

0-1-1-x-1-1-x-1-1-x-dx-

Question Number 206962 by Ghisom last updated on 01/May/24 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\sqrt{\mathrm{1}−{x}}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{1}−{x}}}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}−{x}}}}{dx}=? \\ $$ Answered by lepuissantcedricjunior last updated on 02/May/24 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\sqrt{\mathrm{1}−\boldsymbol{{x}}}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{1}−\boldsymbol{{x}}}}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}−\boldsymbol{{x}}}}}\boldsymbol{{dx}}=\boldsymbol{{k}} \\…