Question Number 56280 by rahul 19 last updated on 13/Mar/19 $${Evaluate}\:: \\ $$$$\left.\mathrm{1}\right)\:\frac{\int_{\mathrm{0}} ^{\:\mathrm{1}_{} } \left(\mathrm{1}−\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{100}} \right)^{\mathrm{201}} \:.{xdx}}{\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathrm{1}−\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{100}} \right)^{\mathrm{202}} .{xdx}}\:=\:? \\…
Question Number 187317 by ajfour last updated on 15/Feb/23 $$\int\frac{{dx}}{{x}\sqrt{\mathrm{1}−\mathrm{2}{x}}} \\ $$ Answered by MJS_new last updated on 15/Feb/23 $$\int\frac{{dx}}{{x}\sqrt{\mathrm{1}−\mathrm{2}{x}}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\mathrm{1}−\mathrm{2}{x}}\:\rightarrow\:{dx}=−\sqrt{\mathrm{1}−\mathrm{2}{x}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{1}}=\mathrm{ln}\:\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\:=…
Question Number 121774 by mnjuly1970 last updated on 11/Nov/20 $$\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{calculus}… \\ $$$$\:\:\:\:\:\:\:{evaluate}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left({H}_{{n}} \right)^{\mathrm{2}} }{{n}^{\mathrm{2}} }\:=? \\ $$$$\:\:\:\:{where}\:\:\:{H}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}\:\left({harmonic}\:{number}\right) \\…
Question Number 121766 by liberty last updated on 11/Nov/20 $$\mathrm{The}\:\mathrm{tangent}\:\mathrm{line}\:\mathrm{to}\:\mathrm{y}\:=\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{at}\:\left(\mathrm{3},\mathrm{4}\right)\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{y}=\mathrm{3x}−\mathrm{5}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{line} \\ $$$$\mathrm{to}\:\mathrm{y}\:=\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{at}\:\left(\mathrm{3},\mathrm{4}\right)\:\mathrm{where}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{an} \\ $$$$\mathrm{injective}\:\mathrm{continous}\:\mathrm{function}\:\mathrm{that}\:\mathrm{satisfies} \\ $$$$\mathrm{f}\left(\mathrm{3}\right)=\mathrm{4}. \\ $$ Terms of Service Privacy…
Question Number 56189 by maxmathsup by imad last updated on 11/Mar/19 $${let}\:{u}_{{n}} =\int_{−\infty} ^{\infty} \:\:\:\frac{{sin}\left({nx}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} +{x}\:+{n}}\:{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{u}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\Sigma\:{u}_{{n}} \\…
Question Number 56188 by maxmathsup by imad last updated on 11/Mar/19 $${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} −\left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{3}}{\mathrm{4}}} }{{x}}\:{dx} \\ $$ Answered by Smail last updated on 12/Mar/19…
Question Number 56187 by maxmathsup by imad last updated on 11/Mar/19 $${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}+{x}\right)^{\alpha} −\left(\mathrm{1}+{x}\right)^{\beta} }{{x}}\:{dx}\:\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 56186 by maxmathsup by imad last updated on 11/Mar/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({ix}\right)}{\mathrm{2}+{x}^{\mathrm{2}} }{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 187251 by horsebrand11 last updated on 15/Feb/23 $$\:\:\int\:\frac{\mathrm{cos}\:\mathrm{9}{x}}{\mathrm{cos}\:\mathrm{4}{x}.\:\mathrm{cos}\:\mathrm{2}{x}}\:{dx}=? \\ $$ Commented by MJS_new last updated on 15/Feb/23 $$=\mathrm{4}\int\left(\mathrm{1}−\mathrm{4sin}^{\mathrm{2}} \:{x}\right)\mathrm{cos}\:{x}\:{dx}− \\ $$$$\:\:\:\:−\int\frac{\mathrm{cos}\:{x}}{\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \:{x}}{dx}− \\…
Question Number 121712 by rs4089 last updated on 11/Nov/20 Answered by Ar Brandon last updated on 11/Nov/20 $$\int_{\mathrm{0}} ^{\frac{\mathrm{a}}{\:\sqrt{\mathrm{2}}}} \int_{\mathrm{y}} ^{\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }} \mathrm{ln}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}}…