Menu Close

Category: Integration

Integrate-1-1-x-dx-

Question Number 55873 by Easyman32 last updated on 05/Mar/19 $${Integrate}..\int\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{{x}}}}\:{dx} \\ $$ Commented by maxmathsup by imad last updated on 05/Mar/19 $${let}\:{I}\:=\int\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{{x}}}}\:{dx}\:\:\:{changement}\:\sqrt{\mathrm{1}+\sqrt{{x}}}={t}\:{give}\:\mathrm{1}+\sqrt{{x}}={t}^{\mathrm{2}} \:\Rightarrow \\ $$$$\sqrt{{x}}={t}^{\mathrm{2}}…

Question-121397

Question Number 121397 by abdelsalamalmukasabe last updated on 07/Nov/20 Answered by MJS_new last updated on 07/Nov/20 $$\int\mathrm{2}^{\mathrm{1}/{x}} {dx}= \\ $$$$\:\:\:\:\:\left[\mathrm{by}\:\mathrm{parts}\right] \\ $$$$=\mathrm{2}^{\mathrm{1}/{x}} {x}+\mathrm{ln}\:\mathrm{2}\:\int\frac{\mathrm{2}^{\mathrm{1}/{x}} }{{x}}{dx}= \\…

1-x-4-dx-

Question Number 121384 by john santu last updated on 07/Nov/20 $$\:\int\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\:\mathrm{dx}\: \\ $$ Commented by MJS_new last updated on 07/Nov/20 $$\mathrm{not}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{using}\:\mathrm{only}\:\mathrm{elementary} \\ $$$$\mathrm{calculus}.\:\mathrm{I}\:\mathrm{guess}\:\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{substitute}\:\mathrm{and} \\…

Question-55834

Question Number 55834 by Tawa1 last updated on 04/Mar/19 Answered by ajfour last updated on 04/Mar/19 $$\:\:\:\left(\mathrm{2}−\mathrm{1}\right){f}_{{min}} \left({x}=\mathrm{2}\right)\leqslant\int_{\mathrm{1}} ^{\:\:\mathrm{2}} {f}\left({x}\right){dx}\:\leqslant\:\frac{\left(\mathrm{2}−\mathrm{1}\right)}{\mathrm{2}}\left[{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)\right] \\ $$$$\:\:\:\Rightarrow\:\frac{\mathrm{1}}{\mathrm{17}}\:\leqslant\int_{\mathrm{1}} ^{\:\:\mathrm{2}} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }\:\leqslant\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{17}}\right)\:<\:\frac{\mathrm{7}}{\mathrm{24}}\:.…