Menu Close

Category: Integration

advanced-calculus-evaluate-0-1-ln-x-tan-1-x-dx-m-n-1970-

Question Number 120775 by mnjuly1970 last updated on 02/Nov/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{advanced}\:\:{calculus}… \\ $$$$\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Phi\overset{???} {=}\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left({x}\right){tan}^{−\mathrm{1}} \left({x}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:…{m}.{n}.\mathrm{1970}… \\ $$ Answered by Dwaipayan…

x-x-2-5-1-2-dx-3-x-x-2-5-1-2-dx-x-x-2-5-3-x-2-5-dx-

Question Number 186310 by normans last updated on 03/Feb/23 $$ \\ $$$$\:\:\:\frac{\int\boldsymbol{{x}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{5}\right)^{\mathrm{1}/\mathrm{2}} \boldsymbol{{dx}}\:−\:\mathrm{3}\int\boldsymbol{{x}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{5}\right)^{−\mathrm{1}/\mathrm{2}} \:\boldsymbol{{dx}}}{\int\:\:\frac{\boldsymbol{{x}}\left[\left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{5}\right)−\mathrm{3}\right]}{\:\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{5}\:\:}}\:\boldsymbol{{dx}}}\:=??\:\:\:\: \\ $$$$ \\ $$ Answered by Frix…

tan-1-1-x-1-x-dx-

Question Number 120761 by bramlexs22 last updated on 02/Nov/20 $$\:\:\:\:\int\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}+\mathrm{x}}}\:\right)\:\mathrm{dx}\:? \\ $$ Answered by liberty last updated on 02/Nov/20 $$\mathrm{We}\:\mathrm{put}\:\mathrm{x}\:=\:\mathrm{cos}\:\psi\:\Rightarrow\mathrm{dx}\:=\:−\mathrm{sin}\:\psi\:\mathrm{d}\psi \\ $$$$\int\:\mathrm{tan}^{−\mathrm{1}} \:\sqrt{\frac{\mathrm{1}−\mathrm{cos}\:\psi}{\mathrm{1}+\mathrm{cos}\:\psi}}\:\left(−\mathrm{sin}\:\psi\:\mathrm{d}\psi\right)\:= \\…

dx-a-sin-x-b-cos-x-

Question Number 120758 by bramlexs22 last updated on 02/Nov/20 $$\:\int\:\frac{\mathrm{dx}}{{a}\:\mathrm{sin}\:\mathrm{x}\:+\:{b}\:\mathrm{cos}\:\mathrm{x}} \\ $$ Answered by Dwaipayan Shikari last updated on 02/Nov/20 $$\mathrm{2}\int\frac{{dt}}{{a}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)+{b}\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)}.\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:{tan}\frac{{x}}{\mathrm{2}}={t}…