Menu Close

Category: Integration

Question-186246

Question Number 186246 by Rupesh123 last updated on 02/Feb/23 Answered by Frix last updated on 02/Feb/23 $$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{{dx}}{\:\sqrt{\mathrm{sin}\:{x}\:\left(\mathrm{1}+\mathrm{cos}\:{x}\right)}}\overset{{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}} {=} \\ $$$$=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dt}}{\:\sqrt{{t}}}=\mathrm{2}\left[\sqrt{{t}}\right]_{\mathrm{0}} ^{\mathrm{1}}…

dx-x-2-9-x-2-

Question Number 120703 by bobhans last updated on 02/Nov/20 $$\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:\sqrt{\mathrm{9}+\mathrm{x}^{\mathrm{2}} }}\:? \\ $$ Answered by john santu last updated on 02/Nov/20 $${let}\:{x}\:=\:\mathrm{3tan}\:{r}\:\Rightarrow{dx}=\mathrm{3sec}\:^{\mathrm{2}} {r}\:{dr} \\…

1-2-1-cos-x-1-cos-x-dx-

Question Number 186196 by normans last updated on 02/Feb/23 $$ \\ $$$$\:\:\:\:\:\:\:\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\:\frac{\sqrt{\mathrm{1}\:}\:\:+\:\:\boldsymbol{{cos}}\:\left(\boldsymbol{{x}}\right)}{\:\sqrt{\mathrm{1}}\:\:\:−\:\:\boldsymbol{{cos}}\:\left(\boldsymbol{{x}}\right)}\:\:\boldsymbol{{dx}}\:\:\:\:\:\: \\ $$$$ \\ $$ Commented by MJS_new last updated on 02/Feb/23…

3-2-x-2-1-1-x-2-2-ln-x-dx-

Question Number 186198 by normans last updated on 02/Feb/23 $$ \\ $$$$\:\:\:\:\:\underset{\mathrm{2}} {\int}^{\mathrm{3}} \:\:\:\frac{\boldsymbol{{x}}^{\mathrm{2}} \:\:−\:\:\mathrm{1}}{\mathrm{1}\:\:\:+\:\:\:^{{x}^{\mathrm{2}} } \sqrt{\mathrm{2}\:\boldsymbol{{ln}}\left(\boldsymbol{{x}}\right)}}\:\:\:\boldsymbol{{dx}}\:\:\:\: \\ $$$$ \\ $$ Answered by MJS_new last…

0-1-sin-x-1-cos-x-dx-

Question Number 186193 by normans last updated on 02/Feb/23 $$ \\ $$$$\:\:\:\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\:\frac{\boldsymbol{{sin}}\:\left(\boldsymbol{{x}}\right)}{\mathrm{1}\:\:+\:\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)}\:\:\boldsymbol{{dx}} \\ $$ Answered by CElcedricjunior last updated on 02/Feb/23 $$\int_{\mathrm{0}} ^{\mathrm{1}}…

2-4-2x-2-1-1-x-2-2-dx-

Question Number 186194 by normans last updated on 02/Feb/23 $$ \\ $$$$\:\:\:\:\:\:\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\:\:\frac{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} \:−\:\mathrm{1}}{\mathrm{1}\:+\:\:\sqrt{\boldsymbol{{x}}^{\mathrm{2}} }\:\:−\:\:\mathrm{2}}\:\:\boldsymbol{{dx}}\:\:\:\: \\ $$$$ \\ $$ Commented by MJS_new last updated…