Question Number 186246 by Rupesh123 last updated on 02/Feb/23 Answered by Frix last updated on 02/Feb/23 $$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{{dx}}{\:\sqrt{\mathrm{sin}\:{x}\:\left(\mathrm{1}+\mathrm{cos}\:{x}\right)}}\overset{{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}} {=} \\ $$$$=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dt}}{\:\sqrt{{t}}}=\mathrm{2}\left[\sqrt{{t}}\right]_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 120703 by bobhans last updated on 02/Nov/20 $$\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:\sqrt{\mathrm{9}+\mathrm{x}^{\mathrm{2}} }}\:? \\ $$ Answered by john santu last updated on 02/Nov/20 $${let}\:{x}\:=\:\mathrm{3tan}\:{r}\:\Rightarrow{dx}=\mathrm{3sec}\:^{\mathrm{2}} {r}\:{dr} \\…
Question Number 120688 by bobhans last updated on 01/Nov/20 $$\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{x}\:\mathrm{dx}}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\: \\ $$$$ \\ $$ Answered by john santu last updated on 02/Nov/20…
Question Number 186214 by test1234 last updated on 02/Feb/23 $${if}\:{S}_{{a}} =\mathrm{cos}\left({a}\right)+\mathrm{sin}\left({x}+{a}\right) \\ $$$${then}\:\int\frac{{S}_{\mathrm{1}} }{{S}_{\mathrm{2}} }−\frac{{x}+{S}_{\mathrm{1}} }{{x}−{S}_{\mathrm{3}} }{dx}=? \\ $$ Commented by mr W last updated…
Question Number 186196 by normans last updated on 02/Feb/23 $$ \\ $$$$\:\:\:\:\:\:\:\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\:\frac{\sqrt{\mathrm{1}\:}\:\:+\:\:\boldsymbol{{cos}}\:\left(\boldsymbol{{x}}\right)}{\:\sqrt{\mathrm{1}}\:\:\:−\:\:\boldsymbol{{cos}}\:\left(\boldsymbol{{x}}\right)}\:\:\boldsymbol{{dx}}\:\:\:\:\:\: \\ $$$$ \\ $$ Commented by MJS_new last updated on 02/Feb/23…
Question Number 55129 by MJS last updated on 17/Feb/19 $$\mathrm{question}\:\mathrm{54995}\:\mathrm{reposted} \\ $$$$\int\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} }{dx}=? \\ $$ Commented by Meritguide1234 last updated on 18/Feb/19 Answered by…
Question Number 186198 by normans last updated on 02/Feb/23 $$ \\ $$$$\:\:\:\:\:\underset{\mathrm{2}} {\int}^{\mathrm{3}} \:\:\:\frac{\boldsymbol{{x}}^{\mathrm{2}} \:\:−\:\:\mathrm{1}}{\mathrm{1}\:\:\:+\:\:\:^{{x}^{\mathrm{2}} } \sqrt{\mathrm{2}\:\boldsymbol{{ln}}\left(\boldsymbol{{x}}\right)}}\:\:\:\boldsymbol{{dx}}\:\:\:\: \\ $$$$ \\ $$ Answered by MJS_new last…
Question Number 186192 by normans last updated on 02/Feb/23 $$ \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{My}}\:\boldsymbol{{old}}\:\boldsymbol{{problem}} \\ $$$$\:\:\:\int\:\:\boldsymbol{{e}}^{\boldsymbol{{tan}}\:\boldsymbol{{x}}} \:\:\boldsymbol{{dx}} \\ $$ Answered by MJS_new last updated on 02/Feb/23 $$\int\mathrm{e}^{\mathrm{tan}\:{x}}…
Question Number 186193 by normans last updated on 02/Feb/23 $$ \\ $$$$\:\:\:\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\:\frac{\boldsymbol{{sin}}\:\left(\boldsymbol{{x}}\right)}{\mathrm{1}\:\:+\:\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)}\:\:\boldsymbol{{dx}} \\ $$ Answered by CElcedricjunior last updated on 02/Feb/23 $$\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 186194 by normans last updated on 02/Feb/23 $$ \\ $$$$\:\:\:\:\:\:\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\:\:\frac{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} \:−\:\mathrm{1}}{\mathrm{1}\:+\:\:\sqrt{\boldsymbol{{x}}^{\mathrm{2}} }\:\:−\:\:\mathrm{2}}\:\:\boldsymbol{{dx}}\:\:\:\: \\ $$$$ \\ $$ Commented by MJS_new last updated…