Question Number 206200 by Shrodinger last updated on 09/Apr/24 $$\int\frac{{xsinx}}{\mathrm{1}−{cosx}}{dx} \\ $$ Answered by Frix last updated on 09/Apr/24 $$\int\frac{{x}\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{cos}\:{x}}{dx}=\mathrm{i}\int\frac{{x}\left(\mathrm{e}^{\mathrm{i}{x}} +\mathrm{1}\right)}{\mathrm{e}^{\mathrm{i}{x}} −\mathrm{1}}{dx}= \\ $$$$=\mathrm{i}\int{xdx}+\mathrm{2i}\int\frac{{x}}{\mathrm{e}^{\mathrm{i}{x}} −\mathrm{1}}{dx}…
Question Number 206224 by mathzup last updated on 09/Apr/24 $${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left({x}^{\mathrm{5}} \right){dx} \\ $$ Answered by Frix last updated on 10/Apr/24 $$\int\mathrm{tan}^{−\mathrm{1}} \:{x}^{{n}} \:{dx}\:\underset{{u}'=\mathrm{1}\wedge{v}=\mathrm{tan}^{−\mathrm{1}}…
Question Number 206078 by universe last updated on 06/Apr/24 Commented by TheHoneyCat last updated on 10/Apr/24 Can you please give an explicit formula for the a_n please? Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 206072 by MetaLahor1999 last updated on 06/Apr/24 $$\int_{\mathrm{0}} ^{\pi} {arctan}\left(\frac{{ln}\left({sin}\left({x}\right)\right)}{{x}}\right){dx}=…? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 206096 by RoseAli last updated on 06/Apr/24 $$\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:.{dx} \\ $$ Answered by Frix last updated on 07/Apr/24 $$\int\frac{{dx}}{{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:\overset{{t}=\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}…
Question Number 206097 by NasaSara last updated on 07/Apr/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 206003 by mnjuly1970 last updated on 04/Apr/24 Answered by Berbere last updated on 04/Apr/24 $$\Omega=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}} }{{x}^{\mathrm{2}} }\left(\mathrm{1}−{cos}\left({x}\right)\right){dx} \\ $$$$\Omega\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}}…
Question Number 205935 by EJJDJX last updated on 03/Apr/24 $$\int\underset{{D}} {\int}\left(\mathrm{4}{y}^{\mathrm{2}} {sin}\left({xy}\right)\right){dxdy}\:\:=\:??? \\ $$$${D}:\:\:\:\:\:\:\:{x}={y}\:\:\:\:\:\:{x}=\mathrm{0}\:\:\:\:\:\:\:{y}=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant{y}\:\:\:\:\:\:\:\mathrm{0}\leqslant{y}\leqslant\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$ Answered by Berbere last updated on 03/Apr/24…
Question Number 205928 by mathzup last updated on 03/Apr/24 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} +{x}^{\mathrm{8}} } \\ $$ Answered by Frix last updated on 03/Apr/24 $$\int\frac{{dx}}{{x}^{\mathrm{8}} +{x}^{\mathrm{4}}…
Question Number 205910 by Simurdiera last updated on 02/Apr/24 $${Resuelve}\:{la}\:{siguiente}\:{integral} \\ $$$${I}\:=\:\int\frac{{x}}{\mathrm{sinh}^{\mathrm{2}} \left({x}\right)\centerdot\mathrm{ln}\:\left(\mathrm{sinh}\:\left({x}\right)\right)\:−\:{x}\centerdot\mathrm{sinh}\:\left({x}\right)\centerdot\mathrm{cosh}\:\left({x}\right)}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com