Menu Close

Category: Integration

xsinx-1-cosx-dx-

Question Number 206200 by Shrodinger last updated on 09/Apr/24 $$\int\frac{{xsinx}}{\mathrm{1}−{cosx}}{dx} \\ $$ Answered by Frix last updated on 09/Apr/24 $$\int\frac{{x}\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{cos}\:{x}}{dx}=\mathrm{i}\int\frac{{x}\left(\mathrm{e}^{\mathrm{i}{x}} +\mathrm{1}\right)}{\mathrm{e}^{\mathrm{i}{x}} −\mathrm{1}}{dx}= \\ $$$$=\mathrm{i}\int{xdx}+\mathrm{2i}\int\frac{{x}}{\mathrm{e}^{\mathrm{i}{x}} −\mathrm{1}}{dx}…

1-x-3-x-2-1-dx-

Question Number 206096 by RoseAli last updated on 06/Apr/24 $$\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:.{dx} \\ $$ Answered by Frix last updated on 07/Apr/24 $$\int\frac{{dx}}{{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:\overset{{t}=\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}…

Question-206003

Question Number 206003 by mnjuly1970 last updated on 04/Apr/24 Answered by Berbere last updated on 04/Apr/24 $$\Omega=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}} }{{x}^{\mathrm{2}} }\left(\mathrm{1}−{cos}\left({x}\right)\right){dx} \\ $$$$\Omega\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}}…

D-4y-2-sin-xy-dxdy-D-x-y-x-0-y-pi-2-0-x-y-0-y-pi-2-

Question Number 205935 by EJJDJX last updated on 03/Apr/24 $$\int\underset{{D}} {\int}\left(\mathrm{4}{y}^{\mathrm{2}} {sin}\left({xy}\right)\right){dxdy}\:\:=\:??? \\ $$$${D}:\:\:\:\:\:\:\:{x}={y}\:\:\:\:\:\:{x}=\mathrm{0}\:\:\:\:\:\:\:{y}=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant{y}\:\:\:\:\:\:\:\mathrm{0}\leqslant{y}\leqslant\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$ Answered by Berbere last updated on 03/Apr/24…

Resuelve-la-siguiente-integral-I-x-sinh-2-x-ln-sinh-x-x-sinh-x-cosh-x-dx-

Question Number 205910 by Simurdiera last updated on 02/Apr/24 $${Resuelve}\:{la}\:{siguiente}\:{integral} \\ $$$${I}\:=\:\int\frac{{x}}{\mathrm{sinh}^{\mathrm{2}} \left({x}\right)\centerdot\mathrm{ln}\:\left(\mathrm{sinh}\:\left({x}\right)\right)\:−\:{x}\centerdot\mathrm{sinh}\:\left({x}\right)\centerdot\mathrm{cosh}\:\left({x}\right)}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com