Menu Close

Category: Integration

0-pi-2-tan-x-1-3-sin-x-cos-x-2-dx-

Question Number 185880 by cortano1 last updated on 29/Jan/23 $$\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}}{\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }\:{dx}=? \\ $$ Commented by MJS_new last updated on 29/Jan/23 $$\mathrm{simply}\:\mathrm{use}\:{t}=\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}} \\ $$…

x-x-x-dx-

Question Number 54797 by afachri last updated on 11/Feb/19 $$ \\ $$$$ \\ $$$$\:\:\:\int\:\:\sqrt{\:\boldsymbol{{x}}\:+\:\sqrt{\:\boldsymbol{{x}}\:+\:\sqrt{\boldsymbol{{x}}\:+\:\sqrt{\:…..}}}}\:\:\boldsymbol{{dx}}\:\:=\:\:\:? \\ $$$$ \\ $$ Answered by Smail last updated on 11/Feb/19…

Question-185848

Question Number 185848 by Mingma last updated on 28/Jan/23 Answered by Frix last updated on 28/Jan/23 $$\int\sqrt{\mathrm{e}^{{x}} +\mathrm{2}}{dx}\:\overset{{t}=\sqrt{\mathrm{e}^{{x}} +\mathrm{2}}} {=}\:\mathrm{2}\int\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} −\mathrm{2}}{dt}= \\ $$$$=\mathrm{2}\int{dt}+\sqrt{\mathrm{2}}\int\frac{{dt}}{{t}−\sqrt{\mathrm{2}}}−\sqrt{\mathrm{2}}\int\frac{{dt}}{{t}+\sqrt{\mathrm{2}}}= \\…

let-u-n-0-sin-nx-2-x-2-6-dx-1-calculate-u-n-and-lim-u-n-n-2-find-nature-of-u-n-and-calaculate-it-3-find-nature-of-u-n-2-

Question Number 54777 by maxmathsup by imad last updated on 10/Feb/19 $${let}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}\left({nx}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{6}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{u}_{{n}} \:\:\:{and}\:{lim}\:{u}_{{n}} \left({n}\rightarrow+\infty\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\Sigma\:{u}_{{n}} \:\:\:{and}\:{calaculate}\:{it}. \\…

1-0-1-dx-2x-4-2x-2-1-2-0-x-1-4-1-x-2-dx-

Question Number 185836 by greougoury555 last updated on 28/Jan/23 $$\:\left(\mathrm{1}\right)\:\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\mathrm{2}{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}=? \\ $$$$\left(\mathrm{2}\right)\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{x}^{\mathrm{1}/\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}=? \\ $$ Answered by Ar…