Question Number 120297 by bramlexs22 last updated on 30/Oct/20 $$\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{{x}\:{dx}}{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}} \\ $$ Answered by Dwaipayan Shikari last updated on 30/Oct/20 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{x}}{{sinx}+{cosx}}{dx}=\int_{\mathrm{0}}…
Question Number 54756 by Knight last updated on 10/Feb/19 $${solve} \\ $$$$\int{tan}\left({x}−\theta\right){tan}\left({x}+\theta\right){tan}\:\mathrm{2}{x}\:{dx} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 10/Feb/19 $${tan}\mathrm{2}{x}={tan}\left({x}+\theta+{x}−\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{tan}\mathrm{2}{x}=\frac{{tan}\left({x}+\theta\right)+{tan}\left({x}−\theta\right)}{\mathrm{1}−{tan}\left({x}+\theta\right){tan}\left({x}−\theta\right)} \\…
Question Number 120285 by Bird last updated on 30/Oct/20 $${calculate}\:\:\int_{\mathrm{2}} ^{\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 120283 by Bird last updated on 30/Oct/20 $${fond}\:\int_{\mathrm{2}} ^{\infty} \frac{{ln}\left(\mathrm{1}+\mathrm{3}{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 185799 by Rupesh123 last updated on 27/Jan/23 Commented by SEKRET last updated on 28/Jan/23 $$\left[\boldsymbol{\mathrm{x}}\right]\:\:\rightarrow\boldsymbol{\mathrm{floor}}\left(\boldsymbol{\mathrm{x}}\right)\:\:\:\:? \\ $$$$\:\left[\mathrm{1}.\mathrm{6}\right]=\:\mathrm{1}\:\:\: \\ $$$$…. \\ $$ Answered by…
Question Number 120257 by bramlexs22 last updated on 30/Oct/20 $$\:\int\:\frac{{f}\:'\left({x}\right)}{{f}\left({x}\right)}\:=? \\ $$ Commented by TITA last updated on 30/Oct/20 $${it}\:{should}\:{be}\:\int\frac{{f}^{'} \left({x}\right)}{{f}\left({x}\right)}{dx}\:{sir} \\ $$$$ \\ $$…
Question Number 120254 by bramlexs22 last updated on 30/Oct/20 $$\:\int\:\frac{{dx}}{\mathrm{1}+\mathrm{cos}\theta.\mathrm{cos}\:{x}\:}\:? \\ $$ Answered by TANMAY PANACEA last updated on 30/Oct/20 $$\int\frac{{dx}}{{cos}\theta\left({sec}\theta+{cosx}\right)} \\ $$$$\frac{\mathrm{1}}{{cos}\theta}\int\frac{{dx}}{{sec}\theta+\frac{\mathrm{1}−{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{1}+{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}}…
Question Number 54701 by Meritguide1234 last updated on 09/Feb/19 Answered by behi83417@gmail.com last updated on 09/Feb/19 $${tg}^{−\mathrm{1}} \frac{{x}}{{x}^{\mathrm{2}} −\mathrm{1}}={a} \\ $$$${sin}^{\mathrm{2}} {a}=\frac{\mathrm{1}}{\mathrm{1}+{cot}^{\mathrm{2}} {a}}=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} +{x}^{−\mathrm{2}} −\mathrm{2}}=\frac{{x}^{\mathrm{2}}…
Question Number 54699 by rahul 19 last updated on 09/Feb/19 $$\int\:{e}^{\mathrm{2}{x}} \:\left(\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\right){dx} \\ $$$$\int{e}^{\mathrm{2}{x}} \:\left(\frac{\mathrm{1}+\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{1}+\mathrm{cos}\:\mathrm{2}{x}}\right){dx}. \\ $$$${Solve}\:{above}\:{Questions}\:{by}\:{using}\:{the} \\ $$$${formulae}\:: \\ $$$$\int{e}^{{kx}} \left\{{f}\left({kx}\right)+{f}\:'\left({kx}\right)\right\}{dx}=\:{e}^{{kx}} \:{f}\left({kx}\right)+{c}. \\…
Question Number 185754 by Mingma last updated on 26/Jan/23 Terms of Service Privacy Policy Contact: info@tinkutara.com