Menu Close

Category: Integration

1-study-the-function-f-x-ln-x-1-x-2-determine-f-1-x-3-cslculate-f-x-dx-snd-f-1-x-dx-4-dtermine-f-1-x-2-f-x-dx-

Question Number 53623 by turbo msup by abdo last updated on 24/Jan/19 $$\left.\mathrm{1}\right)\:{study}\:{the}\:{function} \\ $$$${f}\left({x}\right)={ln}\left({x}+\mathrm{1}−\sqrt{{x}}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{cslculate}\:\:\int\:{f}\left({x}\right){dx}\:{snd} \\ $$$$\int\:{f}^{−\mathrm{1}} \left({x}\right){dx} \\ $$$$\left.\mathrm{4}\right)\:{dtermine}\:\int\:{f}^{−\mathrm{1}}…

1-calculate-A-n-0-x-n-1-e-x-1-dx-with-n-integr-natural-n-2-2-find-the-value-of-0-x-e-x-1-dx-

Question Number 53599 by maxmathsup by imad last updated on 23/Jan/19 $$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{{n}−\mathrm{1}} }{{e}^{{x}} \:+\mathrm{1}}\:{dx}\:\:\:{with}\:{n}\:{integr}\:{natural}\:\:\left({n}\geqslant\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}}{{e}^{{x}} \:+\mathrm{1}}{dx} \\ $$ Commented…

If-x-stands-for-the-gratest-integer-function-the-value-of-4-10-x-2-x-2-28x-196-x-2-dx-is-

Question Number 53536 by gunawan last updated on 23/Jan/19 $$\mathrm{If}\:\left[{x}\right]\:\mathrm{stands}\:\mathrm{for}\:\mathrm{the}\:\mathrm{gratest}\:\mathrm{integer}\:\mathrm{function} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{4}} ^{\mathrm{10}} \frac{\left[{x}^{\mathrm{2}} \right]}{\left[{x}^{\mathrm{2}} −\mathrm{28}{x}+\mathrm{196}\right]+\left[{x}^{\mathrm{2}} \right]}\:{dx}\:\mathrm{is} \\ $$$$ \\ $$ Answered by tanmay.chaudhury50@gmail.com last…

pi-4-pi-4-1-tan-x-1-tan-x-dx-

Question Number 119038 by MJS_new last updated on 21/Oct/20 $$\underset{−\pi/\mathrm{4}} {\overset{+\pi/\mathrm{4}} {\int}}\frac{\sqrt{\mathrm{1}+\mathrm{tan}\:{x}}}{\:\sqrt{\mathrm{1}−\mathrm{tan}\:{x}}}{dx} \\ $$ Answered by mindispower last updated on 21/Oct/20 $$=\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \frac{\sqrt{\mathrm{1}−{tg}\left({x}\right)}}{\:\sqrt{\mathrm{1}+{tg}\left({x}\right)}}{dx},{I}=\int\frac{\sqrt{\mathrm{1}+{tg}\left({x}\right)}}{\:\sqrt{\mathrm{1}−{tg}\left({x}\right)}}{dx} \\…