Menu Close

Category: Integration

1-let-0-lt-lt-pi-2-and-A-0-pi-2-dx-x-2-2sin-x-1-calculate-A-2-calculate-0-pi-2-dx-x-2-2-x-1-

Question Number 53463 by maxmathsup by imad last updated on 22/Jan/19 $$\left.\mathrm{1}\right){let}\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}}\:\:\:\:{and}\:\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{2}{sin}\theta\:{x}\:+\mathrm{1}}} \\ $$$${calculate}\:{A}\left(\theta\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}} \\ $$ Commented…

Question-118997

Question Number 118997 by Lordose last updated on 21/Oct/20 Answered by MJS_new last updated on 21/Oct/20 $$\int\frac{{x}^{\mathrm{2}} −\mathrm{2}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{5}} }{dx}= \\ $$$$\:\:\:\:\:\left[\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}\right] \\ $$$$=−\frac{{x}\left(\mathrm{15}{x}^{\mathrm{6}} +\mathrm{110}{x}^{\mathrm{4}}…

Question-184523

Question Number 184523 by cortano1 last updated on 08/Jan/23 Answered by SEKRET last updated on 08/Jan/23 $$\:\:\:\boldsymbol{\mathrm{t}}=\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\:\:\:\:\:\boldsymbol{\mathrm{dt}}=\:−\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}\:\:\:\:\:\:\boldsymbol{\mathrm{dx}}=\:−\frac{\mathrm{1}}{\boldsymbol{\mathrm{t}}^{\mathrm{2}} }\boldsymbol{\mathrm{dt}} \\ $$$$\:\:\int_{\infty} ^{\:\mathrm{1}} \frac{\frac{\mathrm{1}}{\boldsymbol{\mathrm{t}}^{\mathrm{5}} }}{\lfloor\boldsymbol{\mathrm{t}}\rfloor}\:\centerdot\left(\frac{−\mathrm{1}}{\boldsymbol{\mathrm{t}}^{\mathrm{2}} }\right)\boldsymbol{\mathrm{dt}}=\:\:\int_{\mathrm{1}}…

Question-184514

Question Number 184514 by BOYQOBILOV last updated on 08/Jan/23 Answered by SEKRET last updated on 19/Jan/23 $$\:\:\:\boldsymbol{\mathrm{t}}\:=\:\boldsymbol{\mathrm{x}}+\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{1}}\:\:\:\:\:\:\:\:\:/_{\mathrm{0}} ^{\:\:\:\mathrm{1}} \rightarrow/_{\mathrm{1}} ^{\:\:\mathrm{1}+\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\boldsymbol{\mathrm{dt}}=\:\mathrm{1}+\frac{\boldsymbol{\mathrm{x}}}{\:\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{1}}}\:\boldsymbol{\mathrm{dx}}=\:\frac{\boldsymbol{\mathrm{x}}+\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{1}}}{\:\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}}…

dx-x-6-x-3-

Question Number 118959 by bramlexs22 last updated on 21/Oct/20 $$\:\int\:\frac{{dx}}{{x}^{\mathrm{6}} −{x}^{\mathrm{3}} }\:? \\ $$ Answered by Dwaipayan Shikari last updated on 21/Oct/20 $$\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} −\mathrm{1}}−\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} }…