Question Number 118949 by Bird last updated on 21/Oct/20 $${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left(\mathrm{3}{cosx}\right)}{\left({x}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 118934 by Riteshgoyal last updated on 20/Oct/20 $$ \\ $$$$ \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}}\:{dx} \\ $$$${put}\:{x}+\mathrm{1}=\sqrt{\mathrm{3}}\:{tan}\theta \\ $$$${I}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \:\frac{{ln}\left(\sqrt{\mathrm{3}}\:{tan}\theta−\mathrm{1}\right)}{\mathrm{3}\left({sec}^{\mathrm{2}} \theta\right)}\:\sqrt{\mathrm{3}}\:{sec}^{\mathrm{2}} \theta{d}\theta…
Question Number 118928 by mnjuly1970 last updated on 20/Oct/20 Commented by prakash jain last updated on 20/Oct/20 $$\mathrm{Suggestion}:\:\:\mathrm{attach}\:\mathrm{image}\:\mathrm{to} \\ $$$$\mathrm{original}\:\mathrm{question}\:\mathrm{as}\:\mathrm{answer}. \\ $$ Commented by mnjuly1970…
Question Number 118927 by mnjuly1970 last updated on 20/Oct/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 118924 by mnjuly1970 last updated on 21/Oct/20 $$\:\:\:\:\:\:\:\:\:…\:{advanced}\:{calculus}… \\ $$$$\:\:\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {H}_{{n}} }{{n}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}+{x}\right)\:\:}{{x}}{dx}\:\: \\ $$$$\:\:\:\:\:{note}\:::\:{H}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}}…
Question Number 53378 by Necxx last updated on 21/Jan/19 $${if}\:{u}={e}^{{xyz}} \:{then}\:{u}_{{xyx}} =? \\ $$$$\left.{a}\left.\right){u}\left(\left({xyz}\right)^{\mathrm{2}} +\mathrm{3}{xyz}+\mathrm{1}\right)\:{b}\right){u}\left(\mathrm{3}\left({xyz}\right)^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$\left.{c}\right){u}\left(\left({xyz}\right)^{\mathrm{2}} +\mathrm{2}{yz}+\mathrm{1}\right) \\ $$$$ \\ $$$${please}\:{help} \\ $$…
Question Number 118905 by benjo_mathlover last updated on 20/Oct/20 $$\:\:\:\int\:\frac{{d}\lambda}{\left(\lambda^{\mathrm{2}} −\mathrm{9}\right)^{\mathrm{2}} }\:=?\: \\ $$ Answered by Bird last updated on 21/Oct/20 $${I}=\int\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{9}\right)^{\mathrm{2}} }\:\Rightarrow{I}=\int\:\frac{{dx}}{\left({x}−\mathrm{3}\right)^{\mathrm{2}} \left({x}+\mathrm{3}\right)^{\mathrm{2}}…
Question Number 118891 by cantor last updated on 20/Oct/20 $$\:\int_{\mathrm{0}} ^{\pi} \boldsymbol{{arctan}}\left(\mathrm{3}^{\boldsymbol{{cosx}}} \right)\boldsymbol{{dx}}=??? \\ $$$$ \\ $$$$\boldsymbol{{please}}\:\boldsymbol{{help}} \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 118886 by mnjuly1970 last updated on 20/Oct/20 $$\:\:\:\:\:\:\:\:\:\:…\:\:{advanced}\:\:{calculus}… \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{evaluate}\:::\:\:\left\{_{\mathrm{2}.\:\Omega_{\mathrm{2}} =\:\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \:\frac{{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}{{x}}\:{dx}=??} ^{\mathrm{1}.\:\Omega_{\mathrm{1}} =\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \:\frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{{x}}{dx}=??} \right. \\…
Question Number 118834 by bramlexs22 last updated on 20/Oct/20 $$\:\:\int\:\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{5}} +\mathrm{4}{x}^{\mathrm{3}} }\:{dx}\: \\ $$ Answered by bobhans last updated on 20/Oct/20 $$\:{Solve}\:\int\:\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{5}} +\mathrm{4}{x}^{\mathrm{3}}…