Question Number 53259 by Tawa1 last updated on 19/Jan/19 Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jan/19 $${I}=\int_{\mathrm{0}} ^{\pi} \frac{{xdx}}{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} {x}+{b}^{\mathrm{2}} {sin}^{\mathrm{2}} {x}}{dx} \\ $$$${I}=\int_{\mathrm{0}}…
Question Number 184331 by cortano1 last updated on 05/Jan/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 53228 by maxmathsup by imad last updated on 19/Jan/19 $$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\left({ax}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}\:\:\:{with}\:\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({a}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{xdx}}{\left({ax}+\mathrm{1}\right)^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}} \\…
Question Number 118753 by carlosmald last updated on 19/Oct/20 $$\int_{\mathrm{2}} ^{\mathrm{4}} {x}^{\mathrm{3}} {e}^{{x}} {dx} \\ $$ Commented by mohammad17 last updated on 19/Oct/20 $$\int_{\mathrm{2}} ^{\:\mathrm{4}}…
Question Number 118752 by benjo_mathlover last updated on 19/Oct/20 $$\:\:\int\:\frac{\mathrm{2}\:{dx}}{{x}^{\mathrm{2}} \:\sqrt[{\mathrm{4}\:}]{\left(\mathrm{3}+{x}^{\mathrm{4}} \right)^{\mathrm{5}} }}\:{dx}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 53212 by Joel578 last updated on 19/Jan/19 $$\mathrm{Let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} \:+\:\mathrm{4}} \\ $$$$ \\ $$$$\left({a}\right)\:\mathrm{Find}\:\underset{−{b}} {\overset{{b}} {\int}}\:{f}\left({x}\right)\:{dx},\:\mathrm{for}\:{b}\:>\:\mathrm{0} \\ $$$$\left({b}\right)\:\mathrm{Determine}\:\underset{−\infty} {\overset{\infty} {\int}}\:{f}\left({x}\right)\:{dx}\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\:\mathrm{not} \\ $$ Commented by…
Question Number 118710 by eric last updated on 19/Oct/20 Answered by mathmax by abdo last updated on 19/Oct/20 $$\mathrm{M}=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\mathrm{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{lnx}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\mathrm{dx}\:+\int_{\mathrm{1}}…
Question Number 118705 by Lordose last updated on 19/Oct/20 $$ \\ $$$$ \\ $$$$…\:\blacklozenge\mathrm{Advanced}\:\mathrm{Calculus}\blacklozenge… \\ $$$$ \\ $$$$\mathrm{Evaluate}:: \\ $$$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\:\mathrm{1}\:} \frac{\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}}…
Question Number 118679 by Algoritm last updated on 19/Oct/20 Answered by 1549442205PVT last updated on 19/Oct/20 $$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left[\mathrm{2x}\right].\mathrm{x}}{\left[\mathrm{2x}\right]+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\left[\mathrm{2x}\right].\mathrm{x}}{\left[\mathrm{2x}\right]+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}+\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{\left[\mathrm{2x}\right].\mathrm{x}}{\left[\mathrm{2x}\right]+\mathrm{x}^{\mathrm{2}}…
Question Number 118668 by bemath last updated on 19/Oct/20 $$\:\:\int\:\frac{{x}\mid\mathrm{sin}\:{x}\mid}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx}\:? \\ $$ Answered by Lordose last updated on 19/Oct/20 $$\Omega=\int\:\frac{\mathrm{x}\mid\mathrm{sinx}\mid}{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx} \\ $$$$\Omega=\int\mathrm{x}\mid\mathrm{cosecx}\mid\mathrm{dx}\: \\…