Question Number 206096 by RoseAli last updated on 06/Apr/24 $$\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:.{dx} \\ $$ Answered by Frix last updated on 07/Apr/24 $$\int\frac{{dx}}{{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:\overset{{t}=\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}…
Question Number 206097 by NasaSara last updated on 07/Apr/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 206003 by mnjuly1970 last updated on 04/Apr/24 Answered by Berbere last updated on 04/Apr/24 $$\Omega=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}} }{{x}^{\mathrm{2}} }\left(\mathrm{1}−{cos}\left({x}\right)\right){dx} \\ $$$$\Omega\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}}…
Question Number 205935 by EJJDJX last updated on 03/Apr/24 $$\int\underset{{D}} {\int}\left(\mathrm{4}{y}^{\mathrm{2}} {sin}\left({xy}\right)\right){dxdy}\:\:=\:??? \\ $$$${D}:\:\:\:\:\:\:\:{x}={y}\:\:\:\:\:\:{x}=\mathrm{0}\:\:\:\:\:\:\:{y}=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant{y}\:\:\:\:\:\:\:\mathrm{0}\leqslant{y}\leqslant\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$ Answered by Berbere last updated on 03/Apr/24…
Question Number 205928 by mathzup last updated on 03/Apr/24 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} +{x}^{\mathrm{8}} } \\ $$ Answered by Frix last updated on 03/Apr/24 $$\int\frac{{dx}}{{x}^{\mathrm{8}} +{x}^{\mathrm{4}}…
Question Number 205910 by Simurdiera last updated on 02/Apr/24 $${Resuelve}\:{la}\:{siguiente}\:{integral} \\ $$$${I}\:=\:\int\frac{{x}}{\mathrm{sinh}^{\mathrm{2}} \left({x}\right)\centerdot\mathrm{ln}\:\left(\mathrm{sinh}\:\left({x}\right)\right)\:−\:{x}\centerdot\mathrm{sinh}\:\left({x}\right)\centerdot\mathrm{cosh}\:\left({x}\right)}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 205873 by universe last updated on 01/Apr/24 $$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{1}}{\pi^{\mathrm{2}} }\:\frac{{x}}{\:\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{3}} {x}\:}}\left[\left(\mathrm{3}\pi\mathrm{cos}{x}+\mathrm{4sin}{x}\right)\mathrm{sin}^{\mathrm{2}} {x}+\mathrm{4}\right]{dx}\:\:\: \\ $$ Answered by Berbere last updated on 02/Apr/24 $${x}\rightarrow\pi−{x};{let}\:\Omega={integral}…
Question Number 205826 by tri26112004 last updated on 31/Mar/24 $$\underset{\left[\mathrm{0};\mathrm{3}\right]} {{f}}\left({x}\right)>\mathrm{0} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{3} \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{8} \\ $$$$\underset{\mathrm{0}} {\int}^{\mathrm{3}} \frac{\left[{f}'\left({x}\right)\right]^{\mathrm{2}} }{{f}\left({x}\right)+\mathrm{1}}{dx}\:=\:\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${f}\left(\mathrm{2}\right)=¿ \\ $$ Terms…
Question Number 205750 by MetaLahor1999 last updated on 29/Mar/24 $$\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{2}{x}} }{dx}=? \\ $$ Commented by mokys last updated on 29/Mar/24 $$=\:−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \:\frac{−\mathrm{2}{e}^{−\mathrm{2}{x}}…
Question Number 205725 by NasaSara last updated on 28/Mar/24 Answered by Berbere last updated on 29/Mar/24 $$\int_{\mathrm{0}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{3}} \left[{xy}\right]{dydx}\overset{{xy}={t}} {=}\int_{\mathrm{0}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{3}{x}}…