Menu Close

Category: Integration

advanced-calculus-prove-that-n-1-1-n-2-2n-n-2-3-solution-n-1-1-n-2-2n-n-2-n-1-n-n-n-2-2n-

Question Number 119442 by mnjuly1970 last updated on 24/Oct/20 advancedcalculusprovethat:n=11n2(2nn)=???ζ(2)3$${solution}::\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} \ast\frac{\left(\mathrm{2}{n}\right)!}{\left({n}!\right)^{\mathrm{2}} }}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}!\ast{n}!}{{n}^{\mathrm{2}} \ast\left(\mathrm{2}{n}\right)!}\:…

Question-53843

Question Number 53843 by rahul 19 last updated on 26/Jan/19 Answered by tanmay.chaudhury50@gmail.com last updated on 26/Jan/19 $$\frac{{df}}{{dx}}=\int_{{x}^{\mathrm{2}} } ^{{x}^{\mathrm{3}} } \:\frac{\partial}{\partial{x}}\left(\frac{\mathrm{1}}{{lnt}}\right){dt}+\frac{\mathrm{1}}{{lnx}^{\mathrm{3}} }\frac{{d}\left({x}^{\mathrm{3}} \right)}{{dx}}−\frac{\mathrm{1}}{{lnx}^{\mathrm{2}} }\frac{{d}\left({x}^{\mathrm{2}}…