Menu Close

Category: Integration

Question-183845

Question Number 183845 by Michaelfaraday last updated on 30/Dec/22 Answered by MJS_new last updated on 31/Dec/22 $$\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}}}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}+\mathrm{2}+\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}}}{\:\sqrt{\mathrm{2}}}\:\rightarrow\:{dx}=\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}}}{{t}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{dt}}{\:\sqrt{\mathrm{2}}{t}^{\mathrm{2}} −\mathrm{2}{t}+\sqrt{\mathrm{2}}}=\mathrm{2arctan}\:\left(\sqrt{\mathrm{2}}{t}−\mathrm{1}\right)\:=…

x-a-x-1-a-1-x-dx-

Question Number 118270 by bramlexs22 last updated on 16/Oct/20 $$\:\:\:\int{x}\:{a}^{{x}} \:\left(\mathrm{1}−{a}\right)^{\mathrm{1}−{x}} \:{dx}? \\ $$ Commented by Dwaipayan Shikari last updated on 16/Oct/20 $$\left(\mathrm{1}−{a}\right)\int{x}\left(\frac{{a}}{\left(\mathrm{1}−{a}\right)}\right)^{{x}} \\ $$$$\frac{\mathrm{1}−{a}}{{log}\left(\frac{{a}}{\mathrm{1}−{a}}\right)}{x}\left(\frac{{a}}{\mathrm{1}−{a}}\right)^{{x}}…

x-x-2-25-x-dx-

Question Number 183806 by cortano1 last updated on 30/Dec/22 $$\:\:\int\:\frac{\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{25}}}}{{x}}\:{dx}\:=? \\ $$ Answered by Ar Brandon last updated on 30/Dec/22 $${I}=\int\frac{\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{25}}}}{{x}}{dx}\:,\:{x}=\mathrm{5sh}\vartheta \\ $$$$\:\:=\int\frac{\sqrt{\mathrm{5sh}\vartheta+\mathrm{5ch}\vartheta}}{\mathrm{5sh}\vartheta}\left(\mathrm{5ch}\vartheta{d}\vartheta\right)=\sqrt{\mathrm{5}}\int\left(\frac{{e}^{\mathrm{2}\vartheta}…

0-1-ln-x-x-1-dx-

Question Number 118246 by bemath last updated on 16/Oct/20 $$\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{ln}\:{x}}{{x}+\mathrm{1}}\:{dx}\:=? \\ $$ Answered by Dwaipayan Shikari last updated on 16/Oct/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{logx}}{{x}+\mathrm{1}}{dx}=\left[{log}\left({x}\right){log}\left({x}+\mathrm{1}\right)\right]_{\mathrm{0}}…

let-f-t-0-cos-2-tx-x-2-3-2-dx-with-t-0-1-give-a-explicit-form-of-f-t-2-find-the-value-of-0-xsin-2tx-x-2-3-2-dx-3-give-the-values-of-integrals-0-

Question Number 52703 by maxmathsup by imad last updated on 11/Jan/19 $${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}^{\mathrm{2}} \left({tx}\right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }\:{dx}\:\:{with}\:{t}\:\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{give}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xsin}\left(\mathrm{2}{tx}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:{dx}…