Menu Close

Category: Integration

pi-4-pi-4-1-tan-x-1-tan-x-dx-

Question Number 119038 by MJS_new last updated on 21/Oct/20 +π/4π/41+tanx1tanxdx Answered by mindispower last updated on 21/Oct/20 $$=\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \frac{\sqrt{\mathrm{1}−{tg}\left({x}\right)}}{\:\sqrt{\mathrm{1}+{tg}\left({x}\right)}}{dx},{I}=\int\frac{\sqrt{\mathrm{1}+{tg}\left({x}\right)}}{\:\sqrt{\mathrm{1}−{tg}\left({x}\right)}}{dx} \

let-f-a-0-1-dt-x-a-3-1-calculate-f-a-2-find-also-0-1-dt-x-a-x-a-3-2-3-find-the-values-of-integrals-0-1-dt-x-1-3-and-0-1-dt-x-1-

Question Number 53477 by maxmathsup by imad last updated on 22/Jan/19 letf(a)=01dtx+a+31)calculatef(a)2)findalso01dtx+a(x+a+3)2$$\left.\mathrm{3}\right)\:{find}\:{the}\:{values}\:{of}\:{integrals}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\:\sqrt{{x}+\mathrm{1}}+\mathrm{3}}\:\:{and}\:\int_{\mathrm{0}}…