Menu Close

Category: Integration

Find-the-value-of-k-satisfies-the-equation-0-pi-3-tan-x-cos-x-2k-dx-1-1-2-

Question Number 117944 by bemath last updated on 14/Oct/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{satisfies}\: \\ $$$$\mathrm{the}\:\mathrm{equation}\:\int\:_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \:\left(\frac{\mathrm{tan}\:\mathrm{x}\:\sqrt{\mathrm{cos}\:\mathrm{x}}}{\:\sqrt{\mathrm{2k}}}\:\right)\:\mathrm{dx}\:=\:\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$ \\ $$ Answered by john santu last updated on…

f-x-5x-8-7x-6-2x-7-x-2-1-2-dx-and-f-0-0-then-f-1-

Question Number 117945 by bemath last updated on 14/Oct/20 $$\mathrm{f}\left(\mathrm{x}\right)\:=\:\int\:\frac{\mathrm{5x}^{\mathrm{8}} +\mathrm{7x}^{\mathrm{6}} }{\left(\mathrm{2x}^{\mathrm{7}} +\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx}\:\mathrm{and}\:\: \\ $$$$\mathrm{f}\left(\mathrm{0}\right)\:=\:\mathrm{0}\:,\:\mathrm{then}\:\mathrm{f}\left(\mathrm{1}\right)\:=\:\_\: \\ $$ Commented by bemath last updated on…

Question-183382

Question Number 183382 by mathlove last updated on 25/Dec/22 Commented by CElcedricjunior last updated on 25/Dec/22 $$\int\frac{\boldsymbol{{x}}+\mathrm{1}}{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{{x}}+\mathrm{9}}\boldsymbol{{dx}}=\frac{\mathrm{1}}{\mathrm{4}}\int\frac{\mathrm{4}\boldsymbol{{x}}+\mathrm{6}}{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{{x}}+\mathrm{9}}\boldsymbol{{dx}}−\frac{\mathrm{1}}{\mathrm{4}}\int\frac{−\mathrm{2}}{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{{x}}+\mathrm{9}}\boldsymbol{{dx}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\boldsymbol{{ln}}\mid\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{{x}}+\mathrm{9}\mid−\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{dx}}{\left(\boldsymbol{{x}}+\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{9}}{\mathrm{4}}}\:\boldsymbol{{t}}=\frac{\mathrm{2}\boldsymbol{{x}}+\mathrm{3}}{\mathrm{3}} \\…

ln-1-e-2x-dx-

Question Number 117841 by john santu last updated on 14/Oct/20 $$\int\:\mathrm{ln}\:\left(\mathrm{1}−{e}^{−\mathrm{2}{x}} \right)\:{dx}\:=? \\ $$ Answered by MJS_new last updated on 14/Oct/20 $$\int\mathrm{ln}\:\left(\mathrm{1}−\mathrm{e}^{−\mathrm{2}{x}} \right)\:{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{e}^{−\mathrm{2}{x}}…

Question-117817

Question Number 117817 by peter frank last updated on 13/Oct/20 Commented by Lordose last updated on 13/Oct/20 $$\mathrm{A}\:=\:\int\mathrm{a}^{\sqrt{\mathrm{x}}} \mathrm{dx} \\ $$$$\mathrm{u}=\sqrt{\mathrm{x}}\:\Rightarrow\:\mathrm{dx}=\mathrm{2udu} \\ $$$$\mathrm{A}\:=\int\mathrm{2ua}^{\mathrm{u}} \mathrm{du} \\…

0-ln-sinh-x-dx-

Question Number 117811 by Lordose last updated on 13/Oct/20 $$\int_{\:\mathrm{0}} ^{\:\boldsymbol{\pi}} \boldsymbol{\mathrm{ln}}\mid\boldsymbol{\mathrm{sinh}}\left(\boldsymbol{\mathrm{x}}\right)\mid\boldsymbol{\mathrm{dx}} \\ $$ Answered by mindispower last updated on 13/Oct/20 $$=\int_{\mathrm{0}} ^{\pi} {ln}\left({sh}\left({x}\right)\right){dx} \\…