Question Number 117655 by jeewanbee640 last updated on 13/Oct/20 Commented by prakash jain last updated on 13/Oct/20 $${what}\:{is}\:{L}? \\ $$ Commented by bemath last updated…
Question Number 117638 by bemath last updated on 13/Oct/20 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{2x}^{\mathrm{12}} +\mathrm{5x}^{\mathrm{9}} }{\left(\mathrm{x}^{\mathrm{5}} +\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{3}} }\:\mathrm{dx}\:=?\: \\ $$ Answered by john santu last updated…
Question Number 52089 by Olalekan99 last updated on 03/Jan/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 183157 by cortano1 last updated on 21/Dec/22 $$\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{2019}}}\:=? \\ $$ Answered by MJS_new last updated on 21/Dec/22 $$\int\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +{a}}}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +{a}}}\:\rightarrow\:{dx}=\frac{\sqrt[{\mathrm{3}}]{\left({x}^{\mathrm{3}}…
Question Number 183156 by cortano1 last updated on 21/Dec/22 $$\:\int\:\frac{\mathrm{sin}\:\mathrm{2}{x}\:{dx}}{\mathrm{sin}\:{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\:=? \\ $$ Answered by MJS_new last updated on 21/Dec/22 $$\int\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{sin}\:{x}\:−\mathrm{sin}^{\mathrm{2}} \:\mathrm{2}{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sin}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{cos}\:{x}}\right] \\…
Question Number 117574 by mnjuly1970 last updated on 12/Oct/20 $$\:\:\:\:\:\:\:\:…\:{advanced}\:\:{integral}… \\ $$$$\:\:\:\:\:\: \\ $$$$\mathscr{E}{valuate}\:::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\mathrm{4}{xln}\left({x}\right)}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}\:}{dx}\:=??\: \\ $$$$\:\:\:\:\:…\:{m}.{n}.\mathrm{1970}.. \\ $$$$\: \\…
Question Number 183109 by cortano1 last updated on 20/Dec/22 $$\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\sqrt{\mathrm{sin}\:{x}+\mathrm{1}}}{\:\sqrt{\mathrm{cos}\:{x}+\mathrm{1}}}\:{dx}\:=?\: \\ $$ Answered by universe last updated on 20/Dec/22 $$ \\ $$$$\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}}…
Question Number 51998 by maxmathsup by imad last updated on 01/Jan/19 $${let}\:{U}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{1}\leqslant{x}^{\mathrm{2}} \:+\mathrm{2}{y}^{\mathrm{2}} \leqslant\mathrm{3}\right\} \\ $$$${calculate}\:\int\int_{{U}} \:\:\:\:\frac{{x}−{y}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{dxdxy} \\ $$ Commented by Abdo…
Question Number 51997 by maxmathsup by imad last updated on 01/Jan/19 $${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{xsint}}\:\:{with}\:{x}>−\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({o}\right)\:,{f}\left(\mathrm{1}\right)\:{and}\:{f}\left(\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right)\:{give}\:{f}\:{at}\:{form}\:{of}\:{function}\: \\ $$$$ \\ $$ Commented by maxmathsup…
Question Number 51995 by maxmathsup by imad last updated on 01/Jan/19 $${let}\:\:{f}\:{defined}\:{on}\:\left[\mathrm{0},\mathrm{1}\right]\:{by}\:\:{f}\left(\mathrm{0}\right)=\mathrm{0}\:{and}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}\left[\frac{\mathrm{1}}{\mathrm{2}{x}}\right]+\mathrm{1}} \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jan/19…