Question Number 118752 by benjo_mathlover last updated on 19/Oct/20
Question Number 53212 by Joel578 last updated on 19/Jan/19
Question Number 118710 by eric last updated on 19/Oct/20 Answered by mathmax by abdo last updated on 19/Oct/20 $$\mathrm{M}=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\mathrm{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{lnx}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\mathrm{dx}\:+\int_{\mathrm{1}}…
Question Number 118705 by Lordose last updated on 19/Oct/20
Question Number 118679 by Algoritm last updated on 19/Oct/20 Answered by 1549442205PVT last updated on 19/Oct/20 $$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left[\mathrm{2x}\right].\mathrm{x}}{\left[\mathrm{2x}\right]+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\left[\mathrm{2x}\right].\mathrm{x}}{\left[\mathrm{2x}\right]+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}+\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{\left[\mathrm{2x}\right].\mathrm{x}}{\left[\mathrm{2x}\right]+\mathrm{x}^{\mathrm{2}}…
Question Number 118668 by bemath last updated on 19/Oct/20
Question Number 118674 by mathace last updated on 19/Oct/20
Question Number 118663 by benjo_mathlover last updated on 19/Oct/20
Question Number 53119 by rahul 19 last updated on 18/Jan/19
Question Number 53118 by gunawan last updated on 18/Jan/19