Menu Close

Category: Integration

dx-x-3-2019-1-3-

Question Number 183157 by cortano1 last updated on 21/Dec/22 $$\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{2019}}}\:=? \\ $$ Answered by MJS_new last updated on 21/Dec/22 $$\int\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +{a}}}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +{a}}}\:\rightarrow\:{dx}=\frac{\sqrt[{\mathrm{3}}]{\left({x}^{\mathrm{3}}…

sin-2x-dx-sin-x-sin-2-2x-

Question Number 183156 by cortano1 last updated on 21/Dec/22 $$\:\int\:\frac{\mathrm{sin}\:\mathrm{2}{x}\:{dx}}{\mathrm{sin}\:{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\:=? \\ $$ Answered by MJS_new last updated on 21/Dec/22 $$\int\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{sin}\:{x}\:−\mathrm{sin}^{\mathrm{2}} \:\mathrm{2}{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sin}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{cos}\:{x}}\right] \\…

advanced-integral-Evaluate-I-0-4xln-x-x-4-2x-2-4-dx-m-n-1970-

Question Number 117574 by mnjuly1970 last updated on 12/Oct/20 $$\:\:\:\:\:\:\:\:…\:{advanced}\:\:{integral}… \\ $$$$\:\:\:\:\:\: \\ $$$$\mathscr{E}{valuate}\:::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\mathrm{4}{xln}\left({x}\right)}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}\:}{dx}\:=??\: \\ $$$$\:\:\:\:\:…\:{m}.{n}.\mathrm{1970}.. \\ $$$$\: \\…

let-f-x-0-pi-2-dt-1-xsint-with-x-gt-1-1-calculate-f-o-f-1-and-f-2-2-give-f-at-form-of-function-

Question Number 51997 by maxmathsup by imad last updated on 01/Jan/19 $${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{xsint}}\:\:{with}\:{x}>−\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({o}\right)\:,{f}\left(\mathrm{1}\right)\:{and}\:{f}\left(\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right)\:{give}\:{f}\:{at}\:{form}\:{of}\:{function}\: \\ $$$$ \\ $$ Commented by maxmathsup…

let-f-defined-on-0-1-by-f-0-0-and-f-x-1-2-1-2x-1-calculate-0-1-f-x-dx-

Question Number 51995 by maxmathsup by imad last updated on 01/Jan/19 $${let}\:\:{f}\:{defined}\:{on}\:\left[\mathrm{0},\mathrm{1}\right]\:{by}\:\:{f}\left(\mathrm{0}\right)=\mathrm{0}\:{and}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}\left[\frac{\mathrm{1}}{\mathrm{2}{x}}\right]+\mathrm{1}} \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jan/19…