Question Number 51994 by maxmathsup by imad last updated on 01/Jan/19 $${let}\:{D}_{{n}} =\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:\:/\left({x},{y}\right)\in\left[\frac{\mathrm{1}}{{n}}\:,{n}\left[\:\right\}\right.\right. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\int\int_{{D}_{{n}} } \:\:\:\:\:{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } {dxdy} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}}…
Question Number 51993 by maxmathsup by imad last updated on 01/Jan/19 $${find}\:{A}_{{n}} \left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {cos}\left({tx}\right){dt} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 51991 by maxmathsup by imad last updated on 01/Jan/19 $${find}\:{f}\left({a}\right)\:=\int\:\:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}+{ax}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{ax}^{\mathrm{2}} }}\:\:{with}\:{a}>\mathrm{0} \\ $$ Commented by Abdo msup. last updated on 05/Jan/19 $${changement}\:{x}\sqrt{{a}}={t}\:{give}…
Question Number 51992 by maxmathsup by imad last updated on 01/Jan/19 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\int_{{x}} ^{\mathrm{2}{x}} \:\:\:\:\frac{{t}}{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 51990 by maxmathsup by imad last updated on 01/Jan/19 $${calculate}\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:{x}\:{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx} \\ $$ Answered by peter frank last updated on 01/Jan/19…
Question Number 117527 by Lordose last updated on 12/Oct/20 $$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \mathrm{xsec}\left(\mathrm{2x}\right)\mathrm{dx} \\ $$ Answered by AbduraufKodiriy last updated on 12/Oct/20 Terms of Service Privacy…
Question Number 51988 by maxmathsup by imad last updated on 01/Jan/19 $${let}\:{f}\left({a}\right)\:=\int\:\:\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{4}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int\:\:\:\:\frac{{dx}}{\:\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{4}} }} \\ $$$${a}>\mathrm{0} \\ $$ Terms…
Question Number 51989 by maxmathsup by imad last updated on 01/Jan/19 $${calculate}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\frac{{sinx}}{\mathrm{1}+{sin}^{\mathrm{2}} {x}}{dx} \\ $$ Answered by peter frank last updated on 01/Jan/19…
Question Number 51987 by maxmathsup by imad last updated on 01/Jan/19 $${calculate}\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx} \\ $$ Commented by Abdo msup. last updated on 02/Jan/19…
Question Number 117511 by Canovas last updated on 12/Oct/20 Answered by bemath last updated on 12/Oct/20 $$\int\:\frac{\mathrm{dx}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\left(\mathrm{4}−\mathrm{9tan}\:^{\mathrm{2}} \mathrm{x}\right)}\:=\:\int\:\frac{\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{4}−\mathrm{9tan}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx} \\ $$$$=\:\int\:\frac{\mathrm{d}\left(\mathrm{tan}\:\mathrm{x}\right)}{\mathrm{4}−\mathrm{9tan}\:^{\mathrm{2}} \mathrm{x}}\:=\:\int\:\frac{\mathrm{d}\varphi}{\mathrm{4}−\mathrm{9}\varphi^{\mathrm{2}} }…