Question Number 205248 by universe last updated on 13/Mar/24 $$\:\:\:\int_{\mathrm{0}} ^{\pi} \:\frac{{x}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \left({x}\right)−{x}\mathrm{sin}\left({x}\right)−\mathrm{cos}\left({x}\right)−\mathrm{1}}{\left(\mathrm{1}+{x}\mathrm{sin}\left({x}\right)\right)^{\mathrm{2}} }{dx} \\ $$ Answered by Berbere last updated on 13/Mar/24 $$\left(\frac{{f}\left({x}\right)}{\mathrm{1}+{xsin}\left({x}\right)}+{g}\left({x}\right)\right)^{'}…
Question Number 205216 by dimentri last updated on 13/Mar/24 $$\:\:\:\:\:\int\:\frac{\mathrm{arccos}\:^{\mathrm{3}} \mathrm{x}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{3}} }}\:\mathrm{dx}\:=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 205163 by Lindemann last updated on 11/Mar/24 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{sin}\left({lnx}\right)}{{lnx}}{dx} \\ $$ Answered by mathzup last updated on 11/Mar/24 $${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{sin}\left({lnx}\right)}{{lnx}}{dx}\:{changement}\:{x}={e}^{−{t}} \\…
Question Number 205151 by mathzup last updated on 10/Mar/24 $${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$ Answered by Berbere last updated on 12/Mar/24 $$\Omega=\int_{−\infty} ^{\mathrm{0}}…
Is-there-any-way-to-integrate-1-ln-x-dx-without-hitting-the-Gauss-error-function-or-e-t-2-and-e-t-2-
Question Number 204992 by Akira181 last updated on 05/Mar/24 $$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{way}\:\mathrm{to}\:\mathrm{integrate}: \\ $$$$\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{ln}\left({x}\right)}}\:{dx} \\ $$$$\mathrm{without}\:\mathrm{hitting}\:\mathrm{the}\:\mathrm{Gauss}\:\mathrm{error}\:\mathrm{function} \\ $$$$\mathrm{or}\:{e}^{{t}^{\mathrm{2}} } \:\mathrm{and}\:{e}^{−{t}^{\mathrm{2}} } \:? \\ $$ Answered by TonyCWX08…
Question Number 204985 by Lindemann last updated on 04/Mar/24 $${Q}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{\mathrm{3}} \right)\left(\mathrm{1}−{x}^{\mathrm{33}} \right)\left(\mathrm{1}−{x}^{\mathrm{333}} \right)}{{lnx}}{dx} \\ $$ Answered by witcher3 last updated on 04/Mar/24 $$\mathrm{Q}\left(\mathrm{a}\right)=\int_{\mathrm{0}}…
Question Number 204921 by mathlove last updated on 02/Mar/24 Answered by Frix last updated on 02/Mar/24 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dx}}{\:\sqrt{{x}+\mathrm{3}}+\sqrt{{x}+\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{{x}+\mathrm{3}}−\sqrt{{x}+\mathrm{1}}{dx}= \\ $$$$=\left[\frac{\left({x}+\mathrm{3}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\left({x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{3}}\right]_{\mathrm{0}}…
Question Number 204910 by universe last updated on 01/Mar/24 Commented by witcher3 last updated on 02/Mar/24 $$\mathrm{is}\:\mathrm{This}\:\mathrm{correct}\:\mathrm{formes}? \\ $$ Answered by witcher3 last updated on…
Question Number 204901 by universe last updated on 01/Mar/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 204902 by pticantor last updated on 01/Mar/24 $$\boldsymbol{{calculate}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\boldsymbol{{x}}\left(\mathrm{1}−\boldsymbol{{x}}\right)}\boldsymbol{{dx}} \\ $$ Answered by witcher3 last updated on 01/Mar/24 $$\mathrm{y}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} −\mathrm{x}=\mathrm{0}\Leftrightarrow\mathrm{y}^{\mathrm{2}} +\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}}…