Menu Close

Category: Integration

Question-51876

Question Number 51876 by Tinkutara last updated on 31/Dec/18 Commented by maxmathsup by imad last updated on 31/Dec/18 $${let}\:{solve}\:{y}^{'} \:+\mathrm{2}{y}\:={f}\left({x}\right)\:\:\left({e}\right) \\ $$$$\left({he}\right)\:\Rightarrow{y}^{'} \:+\mathrm{2}{y}\:=\mathrm{0}\:\Rightarrow\frac{{y}^{'} }{{y}}=−\mathrm{2}\:\:\Rightarrow{ln}\left({y}\right)=−\mathrm{2}{x}\:+{k}\:\:\Rightarrow{y}\left({x}\right)={C}\:{e}^{−\mathrm{2}{x}} \\…

0-1-arc-tan-x-2-dx-

Question Number 117403 by bemath last updated on 11/Oct/20 $$\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\left(\mathrm{arc}\:\mathrm{tan}\:\mathrm{x}\right)^{\mathrm{2}} \:\mathrm{dx}\:=? \\ $$ Commented by MJS_new last updated on 11/Oct/20 $$\mathrm{use}\:\mathrm{arctan}\:{x}\:=\frac{\mathrm{ln}\:\left(\mathrm{1}+\mathrm{i}{x}\right)\:−\mathrm{ln}\:\left(\mathrm{1}−\mathrm{i}{x}\right)}{\mathrm{2i}}\:\Rightarrow \\ $$$$−\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{0}}…

differential-equation-solve-dy-dx-1-xy-2x-2-y-general-solution-m-n-1970-

Question Number 117396 by mnjuly1970 last updated on 11/Oct/20 $$\:\:\:\:\:\:\:\:…{differential}\:\:{equation}…\: \\ $$$$ \\ $$$$\:\:\:\:{solve}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{{xy}+\mathrm{2}{x}^{\mathrm{2}} {y}} \\ $$$$\:\:\:\:\:\:\:\:\:{general}\:\:{solution}\:=??? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$$$\:…

prove-that-0-1-2-x-sin-pi-2-x-1-x-dx-1-8pi-m-n-1970-

Question Number 117380 by mnjuly1970 last updated on 11/Oct/20 $$\:\:\:\:\:\:\:\:\:\:\:…\:\:{prove}\:\:{that}\:… \\ $$$$\:\: \\ $$$$\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}{sin}\left(\pi^{\mathrm{2}} {x}+\frac{\mathrm{1}}{{x}}\right){dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{8}\pi}} \\ $$$$ \\ $$$$\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$ Commented by…

calculatef-a-0-ln-1-at-2-1-t-4-dt-with-a-gt-0-2-find-the-value-of-0-ln-3-t-2-1-t-4-dt-

Question Number 51834 by Abdo msup. last updated on 31/Dec/18 $${calculatef}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+{at}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:\:{with}\:{a}>\mathrm{0}. \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}. \\ $$ Commented by…

find-dx-cosx-cos-2x-cos-3x-

Question Number 51824 by Abdo msup. last updated on 30/Dec/18 $${find}\:\int\:\:\:\frac{{dx}}{{cosx}\:+{cos}\left(\mathrm{2}{x}\right)+{cos}\left(\mathrm{3}{x}\right)} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 31/Dec/18 $$\int\frac{{dx}}{{cos}\mathrm{2}{x}+\mathrm{2}{cos}\mathrm{2}{x}.{cosx}} \\ $$$$\int\frac{{dx}}{{cos}\mathrm{2}{x}\left(\mathrm{1}+\mathrm{2}{cosx}\right)} \\ $$$$\int\frac{{dx}}{\left(\mathrm{2}{cos}^{\mathrm{2}}…