Question Number 182891 by mathlove last updated on 16/Dec/22 $$\int_{\mathrm{0}\:\:} ^{\infty} {e}^{{x}} \frac{{sinmx}}{{x}}{dx}=? \\ $$ Answered by dre23 last updated on 16/Dec/22 $${f}\left({t}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}}…
Question Number 51812 by maxmathsup by imad last updated on 30/Dec/18 Commented by peter frank last updated on 30/Dec/18 $${the}\:{same}\:{to}\:\:{you}\:{sir} \\ $$ Commented by maxmathsup…
Question Number 117348 by Lordose last updated on 11/Oct/20 Commented by bemath last updated on 11/Oct/20 $$\mathrm{verry}\:\mathrm{beautifully} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 117342 by bemath last updated on 11/Oct/20 $$\:\left(\mathrm{1}\right)\int\:\left(\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\right)^{\mathrm{2}} \:\mathrm{dx}\:=\:? \\ $$$$\left(\mathrm{2}\right)\:\int\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{x}}\right)\:\mathrm{dx}\:=? \\ $$ Answered by mathmax by abdo last updated on…
Question Number 117329 by mnjuly1970 last updated on 12/Oct/20 $$\:\:\:\:\:\:\:\:\:{nice}\:\:{math} \\ $$$$\:\:{evaluate}:: \\ $$$$ \\ $$$$\:\:\:\: \\ $$$$\:\: \\ $$$$ \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{arctan}\left({x}\right).{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}???…
Question Number 117311 by eric last updated on 10/Oct/20 Answered by Dwaipayan Shikari last updated on 10/Oct/20 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}+….. \\ $$$${tan}^{−\mathrm{1}} {x}={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{5}}…
Question Number 51733 by Tinkutara last updated on 30/Dec/18 Commented by maxmathsup by imad last updated on 30/Dec/18 $${let}\:{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} {x}\:+{b}^{\mathrm{2}} {sin}^{\mathrm{2}} {x}}\:\Rightarrow{I}\:=\int_{\mathrm{0}}…
Question Number 117253 by mathmax by abdo last updated on 10/Oct/20 $$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}\:+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$ Answered by mnjuly1970 last updated on…
Question Number 117249 by mathmax by abdo last updated on 10/Oct/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\mathrm{x}^{\mathrm{2}} } }{\mathrm{x}^{\mathrm{4}} \:+\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx}\: \\ $$ Answered by mathmax by abdo…
Question Number 182769 by cortano1 last updated on 14/Dec/22 $$\:\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\:\frac{{dx}}{\mathrm{sin}\:\left({x}−\mathrm{1}\right)−\mathrm{1}}\:=?\: \\ $$ Answered by ARUNG_Brandon_MBU last updated on 14/Dec/22 $${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{dx}}{\mathrm{sin}\left({x}−\mathrm{1}\right)−\mathrm{1}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}}…