Question Number 182636 by mathlove last updated on 12/Dec/22 $$\underset{−\mathrm{1}} {\overset{\mathrm{3}} {\int}}\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:{dx}=? \\ $$ Commented by mr W last updated on 12/Dec/22 $$=\int_{−\mathrm{1}} ^{\mathrm{0}}…
Question Number 117100 by bemath last updated on 09/Oct/20 $$\int\:\mathrm{sin}\:^{\mathrm{6}} \left(\mathrm{2x}\right)\:\mathrm{cos}\:^{\mathrm{6}} \left(\mathrm{2x}\right)\:\mathrm{dx}\:=? \\ $$ Answered by Dwaipayan Shikari last updated on 09/Oct/20 $$\int\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{6}} }\left({sin}\mathrm{4}{x}\right)^{\mathrm{6}} {dx}…
Question Number 117090 by mnjuly1970 last updated on 09/Oct/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 117089 by mnjuly1970 last updated on 09/Oct/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 117088 by mnjuly1970 last updated on 09/Oct/20 $$\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:\:{calculus}… \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{evsluate}\::: \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{xsin}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{4}}\:{dx}\:=? \\ $$$$\:\:\:\:\:{hint}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\Phi=\int_{\mathrm{0}}…
Question Number 51552 by maxmathsup by imad last updated on 28/Dec/18 $${calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$ Commented by Abdo msup. last updated on…
Question Number 51551 by maxmathsup by imad last updated on 28/Dec/18 $${find}\:{f}\left(\lambda\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{\mathrm{1}+\lambda{tant}}{dt}\:\:\:{with}\:\lambda>\mathrm{0} \\ $$$${also}\:{calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{tant}}{\:\sqrt{\mathrm{1}+\lambda{tant}}}{dt}. \\ $$ Commented by Abdo msup. last…
Question Number 117087 by mnjuly1970 last updated on 09/Oct/20 $$\:\:\:\:\:\:\:\:\:…\:\:{nice}\:\:{calculus}… \\ $$$$\:{please}\:\:{evaluate}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{6}} +\mathrm{1}}{dx}\:=??? \\ $$$$\:\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$ Answered…
Question Number 51550 by maxmathsup by imad last updated on 28/Dec/18 $${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$ Commented by Abdo msup. last updated on 29/Dec/18…
Question Number 117066 by bemath last updated on 09/Oct/20 $$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\:.\:\mathrm{If}\:\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right),\: \\ $$$$\mathrm{f}^{\mathrm{3}} \left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\right)\:,\:\mathrm{f}^{\mathrm{1998}} \left(\mathrm{x}\right)\:=\:\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\mathrm{then}\:\int_{\frac{\mathrm{1}}{\mathrm{e}}} ^{\mathrm{1}} \mathrm{g}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:\_? \\ $$ Answered by 1549442205PVT last…