Menu Close

Category: Integration

prove-that-0-tanh-a-x-tanh-b-x-dx-b-1-2-a-1-2-2-m-n-july-1970-

Question Number 115920 by mnjuly1970 last updated on 29/Sep/20 $$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:{prove}\:\:\:{that}\::: \\ $$$$\: \\ $$$$\:\int_{\mathrm{0}} ^{\:\infty} \left({tanh}^{{a}} \left({x}\right)\:−{tanh}^{{b}} \left({x}\right)\right){dx}\: \\ $$$$\:\:\:\:\:\:\overset{???} {=}\:\:\:\frac{\psi\left(\frac{{b}+\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970}…

find-dx-1-x-2-1-x-3-2-calculate-2-5-dx-1-x-2-1-x-3-

Question Number 50384 by prof Abdo imad last updated on 16/Dec/18 $${find}\:\int\:\:\:\frac{{dx}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{3}} \right)} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{2}} ^{\sqrt{\mathrm{5}}} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{3}} \right)} \\ $$ Commented by Abdo…

sec-4-x-dx-tan-3-x-

Question Number 115896 by bemath last updated on 29/Sep/20 $$\:\int\:\frac{\mathrm{sec}\:^{\mathrm{4}} {x}\:{dx}}{\:\sqrt{\mathrm{tan}\:^{\mathrm{3}} {x}}}\:=? \\ $$ Answered by TANMAY PANACEA last updated on 29/Sep/20 $$\int\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dt}}{{t}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:\:\:\left[{t}={tanx}\:\:\:\:\:\:\frac{{dt}}{{dx}}={sec}^{\mathrm{2}}…

Refer-to-Q181319-x-4-1-x-4-x-2-dx-x-4-1-x-4-x-2-1-x-2-x-2-x-1-x-2-x-2-x-1-1-1-4-2x-1-1-x-2-x-1-1-4-2x-1-1-x-2-x-1-1-4-log-x-2-x-1-1-4-

Question Number 181403 by a.lgnaoui last updated on 24/Nov/22 $${Refer}\:{to}\:\mathrm{Q181319} \\ $$$$\int\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{4}} +{x}+\mathrm{2}}{dx} \\ $$$$\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{4}} +{x}+\mathrm{2}}=\mathrm{1}+\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}−\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)} \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\left(\mathrm{2}{x}+\mathrm{1}\right)−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{4}}×\frac{\left(\mathrm{2}{x}−\mathrm{1}\right)+\mathrm{1}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)}\right. \\…

0-1-2-x-sin-1-x-2-1-x-4-dx-2-x-tanh-2-1-x-dx-

Question Number 115781 by bemath last updated on 28/Sep/20 $$\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} {\int}}\:\frac{{x}\:\mathrm{sin}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:{dx}\:=? \\ $$$$\int\mathrm{2}^{−{x}} \:\mathrm{tanh}\:\left(\mathrm{2}^{\mathrm{1}−{x}} \right)\:{dx}\:=? \\ $$ Answered by bobhans last…

advanced-calculus-evaluate-x-2-2-x-2-x-2-dx-m-n-july-70-

Question Number 115761 by mnjuly1970 last updated on 28/Sep/20 $$\:\:\:\:\:\:….\:\:\:{advanced}\:\:{calculus}…\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:…\:\:\:{evaluate}\:…\: \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Psi=\:\int_{−\infty} ^{\:+\infty} \left(\frac{{x}}{\mathrm{2}+\mathrm{2}^{−{x}} +\mathrm{2}^{{x}} }\right)^{\mathrm{2}} {dx}\:=??? \\ $$$$\:{m}.{n}.{july}\:\mathrm{70}…

Question-50219

Question Number 50219 by cesar.marval.larez@gmail.com last updated on 14/Dec/18 Answered by peter frank last updated on 15/Dec/18 $${all}\:{question}\:{above}\:\:{lie}\:{on}\:{the}\:{concept}\left({partial}\:{fraction}\right) \\ $$$$\int\frac{\mathrm{5x}+\mathrm{3}}{\mathrm{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2x}}=\int\frac{\mathrm{5x}+\mathrm{3}}{{x}\left({x}+\mathrm{1}\right)\left({x}−\mathrm{3}\right)} \\ $$$$\frac{\mathrm{A}}{\mathrm{x}\:}+\frac{\mathrm{B}}{\mathrm{x}−\mathrm{3}\:}+\frac{\mathrm{C}}{\mathrm{x}+\mathrm{1}} \\…