Question Number 204992 by Akira181 last updated on 05/Mar/24 $$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{way}\:\mathrm{to}\:\mathrm{integrate}: \\ $$$$\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{ln}\left({x}\right)}}\:{dx} \\ $$$$\mathrm{without}\:\mathrm{hitting}\:\mathrm{the}\:\mathrm{Gauss}\:\mathrm{error}\:\mathrm{function} \\ $$$$\mathrm{or}\:{e}^{{t}^{\mathrm{2}} } \:\mathrm{and}\:{e}^{−{t}^{\mathrm{2}} } \:? \\ $$ Answered by TonyCWX08…
Question Number 204985 by Lindemann last updated on 04/Mar/24 $${Q}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{\mathrm{3}} \right)\left(\mathrm{1}−{x}^{\mathrm{33}} \right)\left(\mathrm{1}−{x}^{\mathrm{333}} \right)}{{lnx}}{dx} \\ $$ Answered by witcher3 last updated on 04/Mar/24 $$\mathrm{Q}\left(\mathrm{a}\right)=\int_{\mathrm{0}}…
Question Number 204921 by mathlove last updated on 02/Mar/24 Answered by Frix last updated on 02/Mar/24 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dx}}{\:\sqrt{{x}+\mathrm{3}}+\sqrt{{x}+\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{{x}+\mathrm{3}}−\sqrt{{x}+\mathrm{1}}{dx}= \\ $$$$=\left[\frac{\left({x}+\mathrm{3}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\left({x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{3}}\right]_{\mathrm{0}}…
Question Number 204910 by universe last updated on 01/Mar/24 Commented by witcher3 last updated on 02/Mar/24 $$\mathrm{is}\:\mathrm{This}\:\mathrm{correct}\:\mathrm{formes}? \\ $$ Answered by witcher3 last updated on…
Question Number 204901 by universe last updated on 01/Mar/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 204902 by pticantor last updated on 01/Mar/24 $$\boldsymbol{{calculate}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\boldsymbol{{x}}\left(\mathrm{1}−\boldsymbol{{x}}\right)}\boldsymbol{{dx}} \\ $$ Answered by witcher3 last updated on 01/Mar/24 $$\mathrm{y}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} −\mathrm{x}=\mathrm{0}\Leftrightarrow\mathrm{y}^{\mathrm{2}} +\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}}…
Question Number 204866 by mathlove last updated on 29/Feb/24 $$\int\:\frac{{x}+\mathrm{3}}{{x}^{\mathrm{2}} \sqrt{\mathrm{2}{x}+\mathrm{3}}}\:{dx}=? \\ $$ Answered by Frix last updated on 29/Feb/24 $$\int\frac{{x}+\mathrm{3}}{{x}^{\mathrm{2}} \sqrt{\mathrm{2}{x}+\mathrm{3}}}{dx}\:\overset{{t}=\frac{\sqrt{\mathrm{2}{x}+\mathrm{3}}}{{x}}} {=}−\int{dt}=−{t}=−\frac{\sqrt{\mathrm{2}{x}+\mathrm{3}}}{{x}}+{C} \\ $$…
Question Number 204802 by Faetmaaa last updated on 27/Feb/24 $$\mathrm{Wi}-\mathrm{Fi}\:\mathrm{code}\:\mathrm{problem}: \\ $$$$\int_{−\mathrm{2}} ^{\:\mathrm{2}} \left({x}^{\mathrm{3}} \mathrm{cos}\left(\frac{{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\mathrm{d}{x} \\ $$ Answered by TonyCWX08 last updated on 28/Feb/24…
Question Number 204705 by Mummyjay last updated on 25/Feb/24 $$\boldsymbol{{evalute}}\:\int_{\mathrm{0}} ^{\infty} \mathrm{2}^{−\sqrt{\boldsymbol{{tanx}}}} \boldsymbol{{dx}} \\ $$ Commented by TonyCWX08 last updated on 27/Feb/24 $${Undefined} \\ $$…
Question Number 204706 by Mummyjay last updated on 25/Feb/24 $$\boldsymbol{{evaluate}}\:\int_{\mathrm{0}} ^{\infty} \mathrm{2}^{−\boldsymbol{\Gamma}\left(\boldsymbol{{x}}\right)} \boldsymbol{{dx}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com