Menu Close

Category: Integration

If-f-x-is-a-differentiable-function-defined-x-R-such-that-f-x-3-x-f-x-0-then-0-2-f-1-x-dx-

Question Number 115267 by bobhans last updated on 24/Sep/20 $${If}\:{f}\left({x}\right)\:{is}\:{a}\:{differentiable}\:{function} \\ $$$${defined}\:\:\forall{x}\in\mathbb{R}\:{such}\:{that}\:\left({f}\left({x}\right)\right)^{\mathrm{3}} −{x}+{f}\left({x}\right)=\mathrm{0} \\ $$$${then}\:\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{2}}} {\int}}\:{f}^{−\mathrm{1}} \left({x}\right)\:{dx}\:=\: \\ $$ Answered by Olaf last updated…

advanced-mathematics-digamma-limit-if-k-gt-0-then-prove-that-lim-x-0-1-x-k-

Question Number 115193 by mnjuly1970 last updated on 24/Sep/20 $$\:\:\:\:\:\:\:\:\:\:\:…{advanced}\:\:{mathematics}…\:\: \\ $$$$\:\:\:\:\:\:\:::\:\:\:{digamma}\:\:{limit}\:\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:{if}\:\:\:{k}>\mathrm{0}\:\:{then} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:\:{that}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{1}}{{x}}\left(\psi\left(\frac{{k}+{x}}{\mathrm{2}{x}}\right)\:−\:\psi\left(\frac{{k}}{\mathrm{2}{x}}\right)\right)\:=\frac{\mathrm{1}}{{k}}\:\:\:\:\checkmark \\ $$$$ \\ $$$$\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970}……

calculate-D-x-2-y-2-x-2-y-2-dxdy-with-D-x-y-R-2-1-x-1-and-0-y-2-

Question Number 49646 by maxmathsup by imad last updated on 08/Dec/18 $${calculate}\:\int\int_{{D}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{dxdy}\:{with} \\ $$$${D}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{1}\:{and}\:\mathrm{0}\leqslant{y}\leqslant\mathrm{2}\:\right\} \\ $$ Terms of Service…

1-calculate-A-n-0-e-n-x-sin-x-dx-with-n-integr-and-n-1-2-find-nature-of-n-1-A-n-

Question Number 49636 by maxmathsup by imad last updated on 08/Dec/18 $$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{n}\left[{x}\right]} {sin}\left({x}\right){dx}\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{A}_{{n}} \\ $$ Commented by Abdo…

1-find-f-x-0-pi-4-sint-2-x-cos-2t-dt-2-find-g-x-0-pi-4-sint-sin-2t-2-x-cos-2t-2-dx-3-find-the-value-of-0-pi-4-sint-2-3-cos-2t-dt-and-0-pi-4-sin-t-

Question Number 49635 by maxmathsup by imad last updated on 08/Dec/18 $$\left.\mathrm{1}\right){find}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{sint}}{\mathrm{2}+{x}\:{cos}\left(\mathrm{2}{t}\right)}{dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{sint}\:{sin}\left(\mathrm{2}{t}\right.}{\left(\mathrm{2}+{x}\:{cos}\left(\mathrm{2}{t}\right)\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{sint}}{\mathrm{2}+\mathrm{3}\:{cos}\left(\mathrm{2}{t}\right)}{dt}\:\:{and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{sin}\left({t}\right){sin}\left(\mathrm{2}{t}\right)}{\left(\mathrm{2}+\mathrm{3}{cos}\left(\mathrm{2}{t}\right)\right)^{\mathrm{2}}…