Menu Close

Category: Integration

Question-113745

Question Number 113745 by Algoritm last updated on 15/Sep/20 Answered by MJS_new last updated on 15/Sep/20 $$\frac{\mathrm{2cos}\:\mathrm{2}{x}\:−\mathrm{cos}\:{x}}{\mathrm{6}−\mathrm{cos}^{\mathrm{2}} \:{x}\:−\mathrm{4sin}\:{x}}= \\ $$$$=−\frac{\mathrm{cos}\:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}\:−\mathrm{4sin}\:{x}\:+\mathrm{5}}+\frac{\mathrm{2}\left(\mathrm{2cos}^{\mathrm{2}} \:{x}\:−\mathrm{1}\right)}{\mathrm{sin}^{\mathrm{2}} \:{x}\:−\mathrm{4sin}\:{x}\:+\mathrm{5}} \\ $$$$…

0-pi-x-sin-x-1-cos-2-x-dx-

Question Number 113738 by bemath last updated on 15/Sep/20 $$\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{{x}\:\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx}\:? \\ $$ Answered by bobhans last updated on 15/Sep/20 $$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{x}\:\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}}…

Question-48182

Question Number 48182 by cesar.marval.larez@gmail.com last updated on 20/Nov/18 Answered by tanmay.chaudhury50@gmail.com last updated on 20/Nov/18 $$\left.\mathrm{1}\right){t}=\frac{{x}^{{m}} {y}^{{n}} }{\left({x}+{y}\right)^{{m}+{n}} } \\ $$$${lnt}={mlnx}+{nlny}−\left({m}+{n}\right){ln}\left({x}+{y}\right) \\ $$$$\frac{\mathrm{1}}{{t}}\frac{{dt}}{{dx}}=\frac{{m}}{{x}}+\frac{{n}}{{y}}×\frac{{dy}}{{dx}}−\frac{{m}+{n}}{{x}+{y}}\left(\mathrm{1}+\frac{{dy}}{{dx}}\right) \\…

find-sin-pix-3-cos-2pix-dx-

Question Number 48178 by Abdo msup. last updated on 20/Nov/18 $${find}\:\:\int\:\:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{3}\:+{cos}\left(\mathrm{2}\pi{x}\right)}{dx} \\ $$ Commented by Abdo msup. last updated on 25/Nov/18 $${A}=\int\:\:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{3}+{cos}\left(\mathrm{2}\pi{x}\right)}{dx}\:=_{\pi{x}\:={t}} \:\:\frac{\mathrm{1}}{\pi}\int\:\:\:\frac{{sin}\left({t}\right)}{\mathrm{3}+{cos}\left(\mathrm{2}{t}\right)}{dt} \\ $$$$\:\int\:\:\:\frac{{sin}\left({t}\right)}{\mathrm{3}\:+\mathrm{2}{cos}^{\mathrm{2}}…

calculate-arctan-x-1-x-2-dx-

Question Number 48173 by Abdo msup. last updated on 20/Nov/18 $${calculate}\:\int\:\:\frac{{arctan}\left({x}\right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$ Commented by maxmathsup by imad last updated on 26/Nov/18 $${changement}\:{x}={tant}\:{give}\:\:{I}\:=\:\int\:\frac{{t}}{\:\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} {t}}}\:\left(\mathrm{1}+{tan}^{\mathrm{2}}…