Menu Close

Category: Integration

Find-sin2x-dx-

Question Number 47387 by ARVIND DAYAMA last updated on 09/Nov/18 $$\mathscr{F}{ind}\int\sqrt{{sin}\mathrm{2}{x}}\:{dx}=?? \\ $$ Commented by MJS last updated on 09/Nov/18 $$\mathrm{look}\:\mathrm{at}\:\mathrm{the}\:\mathrm{comnents}\:\mathrm{to}\:\mathrm{question}\:\mathrm{42945},\:\mathrm{a} \\ $$$$\mathrm{path}\:\mathrm{is}\:\mathrm{given}\:\mathrm{there} \\ $$…

mathematical-analysis-please-solve-0-x-4-5-x-2-3-1-x-2-ln-x-dx-m-n-july-1970-

Question Number 112854 by mnjuly1970 last updated on 10/Sep/20 $$\:\:\:\:\:\:\:\:\:….\:{mathematical}\:\:{analysis}….\:\: \\ $$$$ \\ $$$$\:\:\:\:{please}\:\:{solve}:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\Omega\:=\int_{\mathrm{0}\:} ^{\:\infty} \frac{{x}^{\frac{\mathrm{4}}{\mathrm{5}}} \:−{x}^{\frac{\mathrm{2}}{\mathrm{3}}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right){ln}\left({x}\right)}\:{dx}\:=??? \\ $$$$…

x-sin-x-1-cos-x-dx-

Question Number 112847 by bemath last updated on 10/Sep/20 $$\:\int\:\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$ Answered by bobhans last updated on 10/Sep/20 $$\mathrm{I}\:=\:\int\:\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\:=\:\int\:\frac{\mathrm{x}−\mathrm{2sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)}\:\mathrm{dx} \\ $$$$\mathrm{I}=\frac{\mathrm{1}}{\mathrm{2}}\int\:\mathrm{x}\:\mathrm{cosec}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\:\mathrm{dx}−\int\:\mathrm{cot}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{dx} \\…

Question-47311

Question Number 47311 by Meritguide1234 last updated on 08/Nov/18 Commented by maxmathsup by imad last updated on 09/Nov/18 $${changement}\:{x}+\mathrm{2}={t}\:{give}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}+\mathrm{2}\right)}{{x}^{\mathrm{2}} \:+\mathrm{2}{x}+\mathrm{5}}{dx}\:=\int_{\mathrm{2}} ^{+\infty}…

calculate-f-dx-x-2-2x-cos-1-2-calculate-g-sin-x-2-2x-cos-1-2-dx-3-find-f-n-with-n-integr-natural-4-calculate-dx

Question Number 47295 by maxmathsup by imad last updated on 07/Nov/18 $${calculate}\:{f}\left(\alpha\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{2}{x}\:{cos}\alpha\:+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left(\alpha\right)=\int_{−\infty} ^{+\infty} \:\:\frac{{sin}\alpha}{\left({x}^{\mathrm{2}} \:+\mathrm{2}{x}\:{cos}\alpha+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{f}^{\left({n}\right)} \left(\alpha\right)\:{with}\:{n}\:{integr}\:{natural}\:. \\…

Question-178341

Question Number 178341 by haladu last updated on 15/Oct/22 Answered by mahdipoor last updated on 15/Oct/22 $${log}_{{y}} {x}=\frac{{lnx}}{{lny}}\Rightarrow{log}_{{b}} {a}+{log}_{{c}} {a}+{log}_{{d}} {a}= \\ $$$${ln}\left({a}\right).\left(\frac{\mathrm{1}}{{ln}\left({b}\right)}+\frac{\mathrm{1}}{{ln}\left({c}\right)}+\frac{\mathrm{1}}{{ln}\left({d}\right)}\right)={q}.{ln}\left({a}\right) \\ $$$$\int\:\frac{{sin}\left({q}.{lna}\right)}{{a}^{\mathrm{2}}…

0-1-tan-1-x-x-1-tan-1-1-2x-2-2x-2-dx-

Question Number 47259 by Ac Kesharwani last updated on 07/Nov/18 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{tan}}^{−\mathrm{1}} \left(\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}+\mathrm{1}}\right)}{\boldsymbol{\mathrm{tan}}^{−\mathrm{1}} \left(\frac{\mathrm{1}−\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{x}}}{\mathrm{2}}\right)}\boldsymbol{\mathrm{dx}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

calculus-evaluate-i-0-pi-2-x-tan-x-dx-ii-0-ln-x-1-x-2-x-4-dx-m-n-july-1970-

Question Number 112797 by mnjuly1970 last updated on 09/Sep/20 $$\:\:\:\:\:\:\:\:\:….{calculus}… \\ $$$$\:\:\:{evaluate} \\ $$$$ \\ $$$${i}:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {x}\sqrt{\:{tan}\left({x}\right)}\:{dx}=\:???\: \\ $$$${ii}:\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} }{dx}\:=???\: \\…