Menu Close

Category: Integration

calculate-D-x-y-1-x-2-y-2-dxdy-with-D-x-y-R-2-x-0-y-0-x-2-y-2-lt-1-

Question Number 46846 by maxmathsup by imad last updated on 01/Nov/18 $${calculate}\:\int\int_{{D}} \:\:\:\:\frac{{x}+{y}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }}{dxdy}\:{with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /{x}\geqslant\mathrm{0},{y}\geqslant\mathrm{0},{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} <\mathrm{1}\right\} \\ $$ Commented by maxmathsup by imad…

if-I-n-xsin-n-x-dx-and-I-n-xsin-n-1-x-cosx-n-sin-n-x-n-2-f-n-I-n-2-then-f-n-

Question Number 177913 by infinityaction last updated on 11/Oct/22 $$\:\:\:\:\:\:\:\boldsymbol{\mathrm{if}}\:\:\boldsymbol{\mathrm{I}}_{\boldsymbol{\mathrm{n}}} =\int\boldsymbol{\mathrm{xsin}}^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{dx}}\:\:\:\boldsymbol{\mathrm{and}}\:\: \\ $$$$\boldsymbol{\mathrm{I}}_{\boldsymbol{\mathrm{n}}} \:=\:−\frac{\boldsymbol{\mathrm{xsin}}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{cosx}}\:}{\boldsymbol{\mathrm{n}}}\:+\frac{\boldsymbol{\mathrm{sin}}^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{x}}\:}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }+\mathrm{f}\left(\mathrm{n}\right)\mathrm{I}_{\mathrm{n}−\mathrm{2}} \\ $$$$\:\:\:\mathrm{then}\:\:\mathrm{f}\left(\mathrm{n}\right)\:=\:? \\ $$ Terms of Service…

let-f-x-0-x-t-sin-t-dt-1-find-a-explicit-form-of-f-x-2-calculate-0-pi-2-t-sint-dt-

Question Number 46843 by maxmathsup by imad last updated on 01/Nov/18 $${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\frac{{t}}{{sin}\left({t}\right)}{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{t}}{{sint}}{dt} \\ $$ Terms of Service…

find-sin2x-dx-

Question Number 46837 by  last updated on 01/Nov/18 $${find}\int\sqrt{{sin}\mathrm{2}{x}}\:{dx}=?? \\ $$ Commented by maxmathsup by imad last updated on 03/Nov/18 $${not}\:{solvable}\:{by}\:{elementary}\:{function}\:{but}\:{we}\:{can}\:{find}\:{approxmation}\:{if}\:{we}\: \\ $$$${have}\:{the}\:{limits}… \\…

Question-46838

Question Number 46838 by peter frank last updated on 01/Nov/18 Answered by MrW3 last updated on 03/Nov/18 $$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\mathrm{2}{x}}{{a}^{\mathrm{2}} }+\frac{\mathrm{2}{y}}{{b}^{\mathrm{2}}…