Question Number 46846 by maxmathsup by imad last updated on 01/Nov/18 $${calculate}\:\int\int_{{D}} \:\:\:\:\frac{{x}+{y}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }}{dxdy}\:{with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /{x}\geqslant\mathrm{0},{y}\geqslant\mathrm{0},{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} <\mathrm{1}\right\} \\ $$ Commented by maxmathsup by imad…
Question Number 112381 by M±th+et+s last updated on 07/Sep/20 $$\int{sin}\left({x}^{\mathrm{3}} \right)\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 46845 by maxmathsup by imad last updated on 01/Nov/18 $${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{−{x}} }{\mathrm{1}+{x}}\:{dx}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 177913 by infinityaction last updated on 11/Oct/22 $$\:\:\:\:\:\:\:\boldsymbol{\mathrm{if}}\:\:\boldsymbol{\mathrm{I}}_{\boldsymbol{\mathrm{n}}} =\int\boldsymbol{\mathrm{xsin}}^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{dx}}\:\:\:\boldsymbol{\mathrm{and}}\:\: \\ $$$$\boldsymbol{\mathrm{I}}_{\boldsymbol{\mathrm{n}}} \:=\:−\frac{\boldsymbol{\mathrm{xsin}}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{cosx}}\:}{\boldsymbol{\mathrm{n}}}\:+\frac{\boldsymbol{\mathrm{sin}}^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{x}}\:}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }+\mathrm{f}\left(\mathrm{n}\right)\mathrm{I}_{\mathrm{n}−\mathrm{2}} \\ $$$$\:\:\:\mathrm{then}\:\:\mathrm{f}\left(\mathrm{n}\right)\:=\:? \\ $$ Terms of Service…
Question Number 46844 by maxmathsup by imad last updated on 01/Nov/18 $${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{2}{t}} {ln}\left(\mathrm{1}+\mathrm{3}{t}\right){dt}\: \\ $$ Commented by maxmathsup by imad last updated on…
Question Number 46843 by maxmathsup by imad last updated on 01/Nov/18 $${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\frac{{t}}{{sin}\left({t}\right)}{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{t}}{{sint}}{dt} \\ $$ Terms of Service…
Question Number 46841 by maxmathsup by imad last updated on 01/Nov/18 $${calculate}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\frac{{dx}}{{cosx}\:{sinx}} \\ $$ Commented by maxmathsup by imad last updated on 01/Nov/18…
Question Number 46842 by maxmathsup by imad last updated on 01/Nov/18 $${find}\:\:\int\:\:\:\:\:\frac{{dx}}{{x}\sqrt{{x}−{x}^{\mathrm{2}} }} \\ $$ Commented by maxmathsup by imad last updated on 01/Nov/18 $${we}\:{have}\:{x}\sqrt{{x}−{x}^{\mathrm{2}}…
Question Number 46837 by last updated on 01/Nov/18 $${find}\int\sqrt{{sin}\mathrm{2}{x}}\:{dx}=?? \\ $$ Commented by maxmathsup by imad last updated on 03/Nov/18 $${not}\:{solvable}\:{by}\:{elementary}\:{function}\:{but}\:{we}\:{can}\:{find}\:{approxmation}\:{if}\:{we}\: \\ $$$${have}\:{the}\:{limits}… \\…
Question Number 46838 by peter frank last updated on 01/Nov/18 Answered by MrW3 last updated on 03/Nov/18 $$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\mathrm{2}{x}}{{a}^{\mathrm{2}} }+\frac{\mathrm{2}{y}}{{b}^{\mathrm{2}}…